Answer
What makes up a perfect planet? It is the right distance from the Sun, it is protected from harmful solar radiation by its magnetic field, it is kept warm by an insulating atmosphere, and it has the right chemical ingredients for life, including water and carbon. Proportionate Ozone Layer and Light amount. According to the panspermia hypothesis, microscopic life—distributed by meteoroids, asteroids and other small Solar System bodies—may exist throughout the Universe. This is the perfect planet. In the end a perfect planet includes SUSTAINBLE DEVELOPEMNT IN EVERY ASPECT OF LIFE!
Explanation:
The sun’s gravitational attraction and the planet’s inertia keeps planets moving is circular orbits.
Explanation:
The planets in the Solar System move around the Sun in a circular orbit. This motion can be explained as a combination of two effects:
1) The gravitational attraction of the Sun. The Sun exerts a force of gravitational attraction on every planet. This force is directed towards the Sun, and its magnitude is

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the planet
r is the distance between the Sun and the planet
This force acts as centripetal force, continuously "pulling" the planet towards the centre of its circular orbit.
2) The inertia of the planet. In fact, according to Newton's first law, an object in motion at constant velocity will continue moving at its velocity, unless acted upon an external unbalanced force. Therefore, the planet tends to continue its motion in a straight line (tangential to the circular orbit), however it turns in a circle due to the presence of the gravitational attraction of the Sun.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
The answer to this is B, C, and D. hope this helped
Explanation:
v = wavelength x frequency
330 = 5 . 10-² m x f
f = 6600 Hz
the frequency that human can hear is about 20 Hz - 20000 Hz
so human can hear the note.
Answer:
the distance between adjacent fringes is increased by a factor o 2
Explanation:
To find how the distance between fringes is modified you can use the following formula for the calculation of the distance between fringes:

D: distance to the screen
d: distance between slits
λ: wavelength of the light
if d is decreased by a factor of 2, that is d'=1/2d, you have:

hence, the distance between adjacent fringes is increased by a factor o 2