Answer:
517.5Ns
Explanation:
F=(MV - MU)/t
where MV - MU is the change in momentum,
therefore, MV - MU = Ft
= 345 X 1.
= 517.5Ns
Answer:
R1 = 5.13 Ω
Explanation:
From Ohm's law,
V = IR............... Equation 1
Where V = Voltage, I = current, R = resistance.
From the question,
I = 2 A, R = R1
Substitute into equation 1
V = 2R1................ Equation 2
When a resistance of 2.2Ω is added in series with R1,
assuming the voltage source remain constant
R = 2.2+R1, and I = 1.4 A
V = 1.4(2.2+R1)................. Equation 3
Substitute the value of V into equation 3
2R1 = 1.4(2.2+R1)
2R1 = 3.08+1.4R1
2R1-1.4R1 = 3.08
0.6R1 = 3.08
R1 = 3.08/0.6
R1 = 5.13 Ω
Answer: 18.27°
Explanation:
Given
Index of refraction of blue light, n(b) = 1.64
Wavelength of blue light, λ(b) = 440 nm
Index of refraction of red light, n(r) = 1.595
Wavelength of red light, λ(r) = 670 nm
Angle of incident, θ = 30°
Angle of refraction of red light is
θ(r) = sin^-1 [(n(a)* sin θ) / n(r)], where n(a) = index of refraction of air = 1
So that,
θ(r) = sin^-1 [(1 * sin 30) / 1.595]
θ(r) = sin^-1 (0.5 / 1.595)
θ(r) = sin^-1 0.3135
θ(r) = 18.27°
Answer:
The magnetic force on the section of wire is
.
Explanation:
Given that,
Current 
Length = 0.750 m
Magnetic field 
We need to calculate the magnetic force on the section of wire
Using formula of magnetic force


Since, 

Hence, The magnetic force on the section of wire is
.
Answer:
Data:-vi=om/s (b/c as in question penny is dropped from building means before coming to ground its initial state or velocity was considered as zero ) now distance or height h=380m and now we have to find the final velocity vf=? and the time t=?
Explanation:
So applying second eq of motion s=vit+1/2×gt² (here we have taken a gravity b/c when ever body is in vertical position then acceleration due to gravity is applied ) s=0×t+1/2×gt² , s=0+1/2×9.8×t² ,380=4.9t² we have to find t so 4.9t²=380 , t²=380÷4.9 , t²=77.55 now sq root on b/s

so t=8.806s and now apply 1st eq o²f motion to find out vf so vf=vi+gt , vf=0+9.8×8.806 ,vf=86.298 and if you want to verify that either this is answer is correct or not so put the value of t in second eq of motion and if you got distance same as give in the question so your value of t is considered as correct likewise s=vit+1/2gt² , s=0+1/2×9.8(8.806)²,s=4.9×77.55 ,s=380m (proved) I hope it would be helpfull