Answer:
The answer is D, I just took the test
Explanation:
Hello!
Using Hooke's law, F spring=k delta x, find the distance a spring with an elastic constant of 4 N/cm will stretch if a 2 newton force is applied to it.
Data:
Hooke represented mathematically his theory with the equation:
F = K * Δx
On what:
F (elastic force) = 2 N
K (elastic constant) = 4 N/cm
Δx (deformation or elongation of the elastic medium or distance from a spring) = ?
Solving:




simplify by 2


Answer:
B.) 1/2 cm
_______________________
I Hope this helps, greetings ... Dexteright02! =)
Acceleration = (final velocity-initial velocity)/time
5 = (v-0)/20
v = 100m/s
Answer:
Let's start by considering the ideal gas law:

where
p is the gas pressure
V is its volume
n is the number of moles
R is the gas constant
T is the absolute temperature
This equation can also be rewritten as

Now, if we consider a fixed amount of gas, this means that the number of moles (n) is constant. So we can rewrite the equation as

And therefore, if we consider a gas undergoing a certain transformation from 1 to 2, we can write

where 1 indicates the conditions of the gas at the beginning and 2 the conditions of the gas after the process. So, the change in pressure/temperature/volume of the gas can be found by using this equation.
<span>The initial speed, u of plane in terms of velocity of sound which may be taken as U
u=142/331=0.429*U
It crosses the sound barrier after says t seconds then we have 331-142=23.1*t or t is given 8.18 s exactly t=9/11s.
After 18 seconds the plane will traveling with velocity V
V=142+18*23.1=557.8 m/s==1.685*U</span>