Answer:
91.7°C
Explanation:
We suppose you have a formula to work from. However, that is not supplied with this problem statement, so we looked one up.
The formula in the attachment is supposed to have good accuracy in the temperature range of interest. It gives vapor pressure of water in kPa, not mmHg, so we needed the conversion for that, too.
560 mmHg corresponds to about 74.66 kPa. The attached "Buck equation" formula is used to find the corresponding temperature. The exponential equation could be solved algebraically using logarithms and the quadratic formula, but we choose to find the solution graphically.
Water boils at about 91.7 °C on Mt. Whitney.
Answer: your answers are between d or b
Explanation:
ANSWER
Option A
EXPLANATION
Arrhenius defines an acid as a substance that will produce hydrogen ions as the only positive ion when dissolved in water.
He also defines a base as a substance that contains a hydroxide ion (OH^-).
Hence, the Arrhenius Model of acids and bases applies that is applied to the aqueous solution.
The correct answer is option A
Answer:
13.4mol of Mg
Explanation:
Given parameters:
Mass of magnesium = 321g
Unknown:
Number of moles = ?
Solution:
The number of moles of a substance is given as;
Number of moles =
Molar mass of Mg = 24g/mol
Insert the parameters and solve;
Number of moles =
= 13.4mol of Mg
Answer:
The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.
Explanation:
From the question,
Container A contains 1000 atoms
Container B contains 500 atoms
<u>The rate of decay of atoms in container A is greater than the rate of decay of atoms in container B.</u>
The reason for such is due to the difference in the concentration of the isotopes. Container A which contains higher number of atoms will have the more changes of the release of the neutron as the changes of the hitting and splitting increases as the density of the atoms increases.
<u>Thus, the atoms in the container A will therefore decay faster than the atoms in the container B. </u>