The human eye is able to see images and colors because of the specialized photoreceptor cells in the retina called rods and cones.
7.22 moles of C2H6. Since there are 2 carbon atoms per C2H6, we must multiply the number of moles of C2H6 by 2 to get the number of moles of Carbon which is 14.4 or 14 if using two sig figs.
The rate of the reaction is measurable quantity that refers to the amount or how much is are chemical substances reagents used up or converted into the product over some period of time.
Rate = change in the amount/time.
This can indirectly be observed through many ways, such as the volume of gas given off if the byproduct is a gas being produced, the colour of the solution etc.
Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.