Answer:
It could lead to Fatigue
Low energy.
Headaches.
Aches, pains, and tense muscles.
Chest pain and rapid heartbeat.
Explanation:
Explanation:
Do the step 3 as outlined in the lab guide. record your results in the appropriate blank.
D
Make an observation.
Conduct research.
Form hypothesis.
Test hypothesis.
Record data.
Draw conclusion.
Replicate.
One thing that is designed to change in the set up of the experiment. ( The things that I can change) Independent Variable.
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
To determine the upper bond
Ec(u) = EmVm + EpVp
Em is the elastic modulus of cobalt.
E₁ is the elastic modulus of the particulate
Vm is the volume fraction of cobalt
Vp is the volume fraction of particulate
substitute
Ec(u) = 200 (Vm) + 700 (Vp)
To determine the lower bound
Ec (l) = EmEp/VmEp+ VpEm
Substitute
Ec (l) = 200(700)/Vm(700) + Vp (200)
Ec (l) = 1400/7Vm+2Vp