1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
5

50 points! I will mark brainliest! Random answers will be reported :)

Mathematics
1 answer:
ASHA 777 [7]3 years ago
3 0

Answer:

x=10

Step-by-step explanation:

Notice that all three sides of the given triangle has one tick mark.

This means that all three sides are congruent, meaning that we have an equilateral triangle.

And for equilateral triangles, all three angles are also congruent.

So:

\angle CBA=\angle BAC=\angle ACB

Also, recall that the interior angles of a triangle is always 180. Thus:

\angle CBA+\angle BAC+\angle ACB=180

Substitute:

\angle CBA+\angle CBA+\angle CBA=180

Combine like terms:

3\angle CBA=180

Substitute:

3(6x)=180

Multiply:

18x=180

Thus:

x=10

And we are done!

You might be interested in
Solve this problem please
Viefleur [7K]

Answer:

x=22


Step-by-step explanation:

1408/64

8 0
3 years ago
Read 2 more answers
Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant below the line y=5 and betw
vfiekz [6]

First, complete the square in the equation for the second circle to determine its center and radius:

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0

<em>x</em> ² - 10<em>x</em> + 25 + <em>y </em>² = 25

(<em>x</em> - 5)² + <em>y</em> ² = 5²

So the second circle is centered at (5, 0) with radius 5, while the first circle is centered at the origin with radius √100 = 10.

Now convert each equation into polar coordinates, using

<em>x</em> = <em>r</em> cos(<em>θ</em>)

<em>y</em> = <em>r</em> sin(<em>θ</em>)

Then

<em>x</em> ² + <em>y</em> ² = 100   →   <em>r </em>² = 100   →   <em>r</em> = 10

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0   →   <em>r </em>² - 10 <em>r</em> cos(<em>θ</em>) = 0   →   <em>r</em> = 10 cos(<em>θ</em>)

<em>y</em> = 5   →   <em>r</em> sin(<em>θ</em>) = 5   →   <em>r</em> = 5 csc(<em>θ</em>)

See the attached graphic for a plot of the circles and line as well as the bounded region between them. The second circle is tangent to the larger one at the point (10, 0), and is also tangent to <em>y</em> = 5 at the point (0, 5).

Split up the region at 3 angles <em>θ</em>₁, <em>θ</em>₂, and <em>θ</em>₃, which denote the angles <em>θ</em> at which the curves intersect. They are

<em>θ</em>₁ = 0 … … … by solving 10 = 10 cos(<em>θ</em>)

<em>θ</em>₂ = <em>π</em>/6 … … by solving 10 = 5 csc(<em>θ</em>)

<em>θ</em>₃ = 5<em>π</em>/6  … the second solution to 10 = 5 csc(<em>θ</em>)

Then the area of the region is given by a sum of integrals:

\displaystyle \frac12\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}\left(10^2-(10\cos(\theta))^2\right)\,\mathrm d\theta+\int_{\frac\pi6}^{\frac{5\pi}6}\left((5\csc(\theta))^2-(10\cos(\theta))^2\right)\,\mathrm d\theta\right)

=\displaystyle 50\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\} \sin^2(\theta)\,\mathrm d\theta+\frac12\int_{\frac\pi6}^{\frac{5\pi}6}\left(25\csc^2(\theta) - 100\cos^2(\theta)\right)\,\mathrm d\theta

To compute the integrals, use the following identities:

sin²(<em>θ</em>) = (1 - cos(2<em>θ</em>)) / 2

cos²(<em>θ</em>) = (1 + cos(2<em>θ</em>)) / 2

and recall that

d(cot(<em>θ</em>))/d<em>θ</em> = -csc²(<em>θ</em>)

You should end up with an area of

=\displaystyle25\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}(1-\cos(2\theta))\,\mathrm d\theta-\int_{\frac\pi6}^{\frac{5\pi}6}(1+\cos(2\theta))\,\mathrm d\theta\right)+\frac{25}2\int_{\frac\pi6}^{\frac{5\pi}6}\csc^2(\theta)\,\mathrm d\theta

=\boxed{25\sqrt3+\dfrac{125\pi}3}

We can verify this geometrically:

• the area of the larger circle is 100<em>π</em>

• the area of the smaller circle is 25<em>π</em>

• the area of the circular segment, i.e. the part of the larger circle that is bounded below by the line <em>y</em> = 5, has area 100<em>π</em>/3 - 25√3

Hence the area of the region of interest is

100<em>π</em> - 25<em>π</em> - (100<em>π</em>/3 - 25√3) = 125<em>π</em>/3 + 25√3

as expected.

3 0
3 years ago
Please help with this question. I need an answer ASAP!! I need help! I don't understand this!
Romashka-Z-Leto [24]

Answer: 42°

<u>Step-by-step explanation:</u>

HJ is an angle bisector of ∠IHK so

∠IHJ ≅ ∠KHJ ⇒ m∠IHJ = m∠KHJ

                           3a + 6 = 5a - 18

                                   6  = 2a - 18

                                  24 = 2a

                                   12 = a

∠IHJ = 3a + 6

        = 3(12) + 6

        = 36 + 6

         = 42

8 0
3 years ago
Solve on the interval [0/2pi]<br><br> 1-cos(theta) = (1/2)
Airida [17]

Answer:

Final answer is x=\frac{\pi}{3} and x=\frac{5\pi}{3}.

Step-by-step explanation:

Given equation is 1-\cos\left(\theta\right)=\frac{1}{2}

Now we need to find the solution of  1-\cos\left(\theta\right)=\frac{1}{2} in given interval [0, 2\pi ].

1-\cos\left(\theta\right)=\frac{1}{2}

-\cos\left(\theta\right)=\frac{1}{2}-1

-\cos\left(\theta\right)=-\frac{1}{2}

\cos\left(\theta\right)=\frac{1}{2}

which gives x=\frac{\pi}{3} and x=\frac{5\pi}{3} in the given interval.

Hence final answer is x=\frac{\pi}{3} and x=\frac{5\pi}{3}.

6 0
3 years ago
What is 2,617 rounded to the nearest ten
Dmitry [639]
The answer would be 2,6 .
5 0
3 years ago
Other questions:
  • TEP 1
    13·1 answer
  • Highest common factor of 92 and 42
    7·2 answers
  • Determine the domain and range of the relation {(-2, 4), (1, 3), (0, -4), (3, 2)}
    6·1 answer
  • raquel throws darts at a coordinate grid centered at the origin. her goal is to create a line of darts. her darts actually hit t
    7·2 answers
  • Find the
    10·2 answers
  • What is the probability of Sunday following Saturday this week?
    5·2 answers
  • What is the value of x? enter your answer in the box
    10·1 answer
  • What is the value of y in the equation y − 7 = 21? (4 points)
    5·2 answers
  • PLEASE I NEED HELP!!!!!!!!!!?
    13·1 answer
  • The two boxes shown are cuboids.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!