Using the z-distribution, it is found that the p-value is of 0.0192.
At the null hypothesis, it is <u>tested if commercial trucks owners do not violate laws requiring front license plates at a higher rate than owners of passenger cars</u>, that is, the subtraction is of at most 0, hence:
![H_0: p_2 - p_1 \leq 0](https://tex.z-dn.net/?f=H_0%3A%20p_2%20-%20p_1%20%5Cleq%200)
At the alternative hypothesis, it is <u>tested if commercial truck owners violate the laws more</u>, that is, the subtraction is positive, hence:
![H_1: p_2 - p_1 > 0](https://tex.z-dn.net/?f=H_1%3A%20p_2%20-%20p_1%20%3E%200)
For each sample, the <u>size, the proportion and the standard error</u> are given by:
![n_1 = 2165, p_1 = \frac{235}{2165} = 0.1085, s_1 = \sqrt{\frac{0.1085(0.8915)}{2165}} = 0.0067](https://tex.z-dn.net/?f=n_1%20%3D%202165%2C%20p_1%20%3D%20%5Cfrac%7B235%7D%7B2165%7D%20%3D%200.1085%2C%20s_1%20%3D%20%5Csqrt%7B%5Cfrac%7B0.1085%280.8915%29%7D%7B2165%7D%7D%20%3D%200.0067)
![n_2 = 330, p_1 = \frac{50}{330} = 0.1515, s_1 = \sqrt{\frac{0.1515(0.8485)}{330}} = 0.0197](https://tex.z-dn.net/?f=n_2%20%3D%20330%2C%20p_1%20%3D%20%5Cfrac%7B50%7D%7B330%7D%20%3D%200.1515%2C%20s_1%20%3D%20%5Csqrt%7B%5Cfrac%7B0.1515%280.8485%29%7D%7B330%7D%7D%20%3D%200.0197)
For the distribution of differences, the <em>mean and the standard error</em> are given by:
![\overline{p} = p_2 - p_1 = 0.1515 - 0.1085 = 0.043](https://tex.z-dn.net/?f=%5Coverline%7Bp%7D%20%3D%20p_2%20-%20p_1%20%3D%200.1515%20-%200.1085%20%3D%200.043)
![s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.0067^2 + 0.0197^2} = 0.0208](https://tex.z-dn.net/?f=s%20%3D%20%5Csqrt%7Bs_1%5E2%20%2B%20s_2%5E2%7D%20%3D%20%5Csqrt%7B0.0067%5E2%20%2B%200.0197%5E2%7D%20%3D%200.0208)
The test statistic is given by:
![z = \frac{\overline{p} - p}{s}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B%5Coverline%7Bp%7D%20-%20p%7D%7Bs%7D)
In which
is the value tested at the null hypothesis.
Hence:
![z = \frac{\overline{p} - p}{s}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B%5Coverline%7Bp%7D%20-%20p%7D%7Bs%7D)
![z = \frac{0.043 - 0}{0.0208}](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B0.043%20-%200%7D%7B0.0208%7D)
![z = 2.07](https://tex.z-dn.net/?f=z%20%3D%202.07)
The p-value is found using a z-distribution calculator, for a <u>right-tailed test,</u> as we are testing if the proportion is more than a value, with <u>z = 2.07.</u>
- Using the calculator, the p-value is of 0.0192.
A similar problem is given at brainly.com/question/15545277