Answer:
α = π/3
β = π/6
Explanation:
Use arc length equation to find the sum of the angles.
s = rθ
π/20 m = (0.1 m) (α + β)
π/2 = α + β
Draw a free body diagram for each sphere. Both spheres have three forces acting on them:
Weight force mg pulling down,
Normal force N pushing perpendicular to the surface,
and tension force T pulling tangential to the surface.
Sum of forces on A in the tangential direction:
∑F = ma
T − m₁g sin α = 0
T = m₁g sin α
Sum of forces on B in the tangential direction:
∑F = ma
T − m₂g sin β = 0
T = m₂g sin β
Substituting:
m₁g sin α = m₂g sin β
m₁ sin α = m₂ sin β
(1 kg) sin α = (√3 kg) sin (π/2 − α)
1 sin α = √3 cos α
tan α = √3
α = π/3
β = π/6
A is not linked. Coal burning is not an effect of acid rain.
~Deceptiøn
We need to draw a coordinates. the east and south should be the north vector for horizontal line 50 KM in distance is zero. the south is a negative. the south east and north west we should draw the 45 degrees angle in the approprate quadrant and then use the 1-1-sqrt(2) have a relationship in 45-45-90 triangles to resolve the N/S, E/W components.
hope this help
#Case -1
If Pulling force is less than frictional force the object won't move .
#Case-2
If Pulling force is greater than frictional force then object will be .
In order to calculate friction force you need Limiting friction first .

u s is coefficient of static friction and N is normal reaction
Or

Explanation:
Given that,
An object in free fall will fall d feet in t seconds, where d and t are related by the algebraic model as :
..........(1)
(a) We need to find the time taken by the object to fall 1148 ft. Put this in equation (1) as :


t = 8.47 seconds
(b) If the object is in free fall for 18.5 sec after it is dropped, then the height of the object is given by :

d = 5476 ft
Hence, this is the required solution.