Answer:
Option E, Half life = 
Explanation:
For a first order reaction, rate constant and half-life is related as:

Where,
= Half life
k = Rate constant
Rate constant given = 


So, the correct option is option E.
Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J
They use it because it's standerize and evidence vase
Answer:
It would be an isotope.
Background Information:
Isotopes are typically elements that have a different number of protons than neutrons. The atomic mass is the total number of protons and neutrons. The atomic number is the number of protons.
Explanation:
If the atomic number is the number of protons that means that this particular element has 8 protons. If the atomic mass is the total number of protons and neutrons then we can simply take away the amount of protons from that number, 18 - 8 = 10. If we take protons away from the number of protons and neutrons we are left with the number of neutrons. So there are 10 neutrons. Because there are 8 protons and 10 neutrons, or a different amount of neutrons and protons we know that this particular atom is an isotope.
The mass of nitrogen gas that participated in the chemical reaction is 1.54g
HOW TO CALCULATE MASS OF AN ELEMENT:
- Mass of a substance can be calculated by multiplying the number of moles in mol of the substance by its molecular mass in g/mol. That is;
- mass (M) = molar mass (MM) × number of moles (n)
According to this question, a chemist determines by measurements that 0.0550 moles of nitrogen gas (N2) participate in a chemical reaction.
- The molecular mass of nitrogen gas (N2) = 14.01(2)
= 28.02g/mol
Hence, the mass of the nitrogen gas that participated in the chemical reaction is calculated as follows:
- Mass (g) = 0.0550 mol × 28.02 g/mol
Therefore, the mass of nitrogen gas that participated in the chemical reaction is 1.54g
Learn more: brainly.com/question/18269198