Answer:
As shown below
Step-by-step explanation:
Given that when X denotes the errors in an experimental transmission channel, when checked by a certifier that detects missing pulses. follows the cumulative density function as given below:
Answer:
ZB = 54
Step-by-step explanation:
Complementary angles add to 90 degrees
ZA + ZB = 90
x-15 + x+3 = 90
Combine like terms
2x-12 =90
Add 12 to each side
2x-12+12 = 90+12
2x = 102
Divide by 2
2x/2 = 102/2
x = 51
We want to find the measure of ZB
ZB = x+3
ZB = 51+3
ZB = 54
Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.