Answer:
The correct answer to the question is
Both A and B are true
Explanation:
The particles of a gas are free to move to occupy the entire volume in which they are placed due to the smallerinter molecular forces holding them together hence due to the face that pressure is a measure of the Force per unit area that is Pressure P = ( Force F)/ (Area A) then the force per unit area, exerted on the all of the container by the gaseous particles which are colliding with each other and with the walss of the container is fairly constant through out the surface oof the container
In the case of the liquid which are held on together by more stronger forces, the force per nit area exerted by the liquid particle is transmitted from one particle to the next until it reaches the container's surface. Then remembering that the force of gravity on the liquid is acting in one direction (that is downwards) the sum of the fprce due to the weight incrreases as we progress deaper into the liquid hence the pressure increases per unit depth
Answer:
a ) = 381.48 J
b )= 84.25 cm
Explanation:
Kinetic energy of the runner
= 1/2 m v²
= .5 x 66 x 3.4²
= 381.48 J
The final kinetic energy of the runner is zero .
Loss of mechanical energy
= 381.48 J
This loss in mechanical energy is due to action of frictional force .
b )
Let s be the distance of slide
deceleration due to frictional force
= μmg/m
.7 x 66 x 9.8 / 66
a = - 6.86 m s⁻¹
v² = u² - 2 a s
0 = 3.4² - 2x6.86 s
s = 3.4² / 2x6.86
= .8425 m
84.25 cm
Answer:
C) С
Explanation:
'C' and 'E' are compressions.
'A' and 'D' are rarefactions.
have a good Day!
Velocity = distance (m) /time (s)
convert kilometers to metres (132300), substitute into formula.
convert hours to seconds (18000), substitute into formula. it becomes,
132300 divided by 18000 = 7.35 M/S
always answer questions in the units given in the question.
to get m/s into km/h, multiply by 3.6, therefore it equals 24.46 km/h
Answer:
The capacitance of your capacitor is 5.476 x 10⁻⁵ μF
Explanation:
Given;
diameter of the aluminum pie plates = 16 cm = 0.16 m
separation distance, d = 3.25 mm = 0.00325 m
voltage across the parallel plates = 6 V

where;
C is the capacitance of your capacitor
ε is the permittivity of free space = 8.85 x 10⁻¹² (F/m)
d is separation distance
A is the area of the plate = ¹/₄ (πd²) = 0.25 (π x 0.16²) = 0.02011 m²

Therefore, the capacitance of your capacitor is 5.476 x 10⁻⁵ μF