The answer to this question is: it depends. It depends on the arrangement of the capacitors in a circuit: it can be either in series or in parallel. The difference is shown in the picture.
Capacitors are like batteries in a way that they store power from the source. It has some rules depending on the type of circuit. For parallel circuits, the voltage across each capacitor is equal. Therefore, V₁=V₂=V₃.
On the other hand, if the capacitors are arranged in series, the voltage across each capacitor should add up to the total voltage of the source. Therefore, V₁+V₂+V₃ = Total Voltage.
The choices can be found elsewhere and as follows:
A anthropocentric
B frontier
C land
D biocentric
I think the correct answer is option A. It is anthropocentric the type of ethic that is life-centered and views humans as just one component life on Earth. Hope this answers the question. Have a nice day.
Answer:
step bro was stuck on the elevator
Explanation:
Answer with Explanation:
We are given that
Angle of incidence,
Angle of refraction,
a.Refractive index of air,
We know that


b.Wavelength of red light in vacuum,

Wavelength in the solution,

c.Frequency does not change .It remains same in vacuum and solution.
Frequency,
Where 
Frequency,
d.Speed in the solution,

Answer:
D. only briefly while being connected or disconnected.
Explanation:
As we know that transformer works on the principle of mutual inductance
here we know that as per the principle of mutual inductance when flux linked with the primary coil charges then it will induce EMF in secondary coil
So here when AC source is connected with primary coil then it will give output across secondary coil because AC source will have change in flux with time.
Now when we connect DC source across primary coil then it will not induce any EMF across secondary coil because DC source is a constant voltage source in which flux will remain constant always
So here in DC source the EMF will only induce at the time of connection or disconnection when flux will change in it while rest of the time it will give ZERO output
so correct answer will be
D. only briefly while being connected or disconnected.