1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
2 years ago
15

A car accelerates uniformly from rest at a speed of 1.67 ft s^2 over a distance of 5 yards.What is the acceleration of a car?

Physics
2 answers:
stepladder [879]2 years ago
7 0

Answer:

a=  0.256 ft/s^2

Explanation:

Solution:

Since the car has started from rest the initial velocity will be zero

i.e. Vi=0

It gets a speed of 1.6 fts^2,

i.e. Vf=  1.6 fts^2

The distance is 5 yards

i.e d= 5 yards

According to the equation of motion

2as= VF^2- Vi^2

Thus a=  (VF^2- Vi^2)/2s

a=  (1.6^2 - 0)/ 2*5

a=  0.256 ft/s^2

Nina [5.8K]2 years ago
5 0

Answer:

a= 17.69 m/s^2

Explanation:

Step one:

given data

A car accelerates uniformly from rest to 23 m/s

u= 0m/s

v= 23m/s

distance= 30m

Step two:

We know that

acceleration= velocity/time

also,

velocity= distance/time

23= 30/t

t= 30/23

t= 1.30 seconds

hence

acceleration= 23/1.30

accelaration= 17.69 m/s^2

You might be interested in
A 62-kg person jumps from a window to a fire net 20.0 m directly below, which stretches the net 1.4 m. Assume that the net behav
gayaneshka [121]

Answer:

a) x = 0.098

b) x = 2.72 m

Explanation:

(a) To find the stretch of the fire net when the same person is lying in it, you can assume that the net is like a spring with constant spring k. It is necessary to find k.

When the person is falling down he acquires a kinetic energy K, this energy is equal to the elastic potential energy of the net when it is max stretched.

Then, you have:

K=U\\\\\frac{1}{2}mv^2=\frac{1}{2}kx^2        (1)

m: mass of the person = 62kg

k: spring constant = ?

v: velocity of the person just when he touches the fire net = ?

x: elongation of the fire net = 1.4 m

Before the calculation of the spring constant, you calculate the final velocity of the person by using the following formula:

v^2=v_o^2+2gy

vo: initial velocity = 0 m/s

g: gravitational acceleration = 9.8 m/s^2

y: height from the person jumps = 20.0m

v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(20.0m)}=14\frac{m}{s}

With this value you can find the spring constant k from the equation (1):

mv^2=kx^2\\\\k=\frac{mv^2}{x^2}=\frac{(62kg)(14m/s)^2}{(1.4m)^2}=6200\frac{N}{m}

When the person is lying on the fire net the weight of the person is equal to the elastic force of the fire net:

W=F_e\\\\mg=kx

you solve the last expression for x:

x=\frac{mg}{k}=\frac{(62kg)(9.8m/s^2)}{6200N/m}=0.098m

When the person is lying on the fire net the elongation of the fire net is 0.098m

b) To find how much would the net stretch, If the person jumps from 38 m, you first calculate the final velocity of the person again:

v=\sqrt{2gy}=\sqrt{2(9.8m/s^2)(38m)}=27.29\frac{m}{s}

Next, you calculate x from the equation (1):

x=\sqrt{\frac{mv^2}{k}}=\sqrt{\frac{(62kg)(27.29m/s)^2}{6200N/m}}\\\\x=2.72m

The net fire is stretched 2.72 m

5 0
3 years ago
Why is it important to know the direction of the force applied to a moving object and the direction in which the object is movin
erastova [34]

Answer

(C).

When there is an angle between the two directions, the cosine of the angle must be considered.


Step by step Solution

The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.

The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.

The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is W=F\times d.

Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the sin(90)=0 meaning that there is no work done in the direction perpendicular to the motion.

The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is F\times d\times \cos(\theta).




4 0
3 years ago
Read 2 more answers
An airplane is moving at 350 km/hr. If a bomb is
bogdanovich [222]

Answers:

a) -171.402 m/s  

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final height

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb's initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's final velocity

Knowing this, let's begin with the answers:

<h3>b) Time </h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity </h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign only indicates the direction is downwards

<h3>c) Range </h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
Use V=Voe^-t/RC and T=RC to derive T1/2=Tln2
Ksju [112]
Enclosed is some guidance algebra.I find this q a little confusing. It quotes "RC" which usually makes me think of electrical circuits and time constants based on converting calculating RC value and equating that to t for one time constant then 2RC for two time constants etc. The theory being that after 5 time constants - 5RC - a circuit is stable. BUT, this q then goes on to mention HALF LIFE. The curves for both half life and time constant are both exponential, as in the number e to the power of something, but the algebra is slightly different. I hope my algebra is ok.

3 0
3 years ago
Rank the tensions in the ropes, t1, t2, and t3, from smallest to largest, when the boxes are in motion and there is no friction
gizmo_the_mogwai [7]
<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>
5 0
3 years ago
Other questions:
  • When the air under the envelope is heated, the balloon lifts. Which of the following statements is true? A) hot air balloons use
    5·2 answers
  • A 3.1 kg dog stands on an 18 kg flatboat and is 6.1 m from the shore. He walks 2.5 m on the boat toward shore and then stops. As
    5·1 answer
  • How much thermal energy is Generated?
    9·2 answers
  • What is the rate at which energy is transformed from one form to another called?
    12·1 answer
  • A car moves from the point (3.0 m)x^ + (5.0 m)y^ to the point (8.0 m)x^ - (7.0 m)y^ in 2.0 s. what is the magnitude of the avera
    7·1 answer
  • The pressure of moving air is callled
    12·1 answer
  • significant figures are digits read directly from measuring instrument plus one more digit, which is ______ by the observer
    8·2 answers
  • PLEASE HELP ME
    12·1 answer
  • How many dots belong in the electron dot diagram of a boron (B) atom?
    9·1 answer
  • A. You have a 10-volt parallel circuit, with 2 resistors on it. What is the voltage across the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!