1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
2 years ago
15

A car accelerates uniformly from rest at a speed of 1.67 ft s^2 over a distance of 5 yards.What is the acceleration of a car?

Physics
2 answers:
stepladder [879]2 years ago
7 0

Answer:

a=  0.256 ft/s^2

Explanation:

Solution:

Since the car has started from rest the initial velocity will be zero

i.e. Vi=0

It gets a speed of 1.6 fts^2,

i.e. Vf=  1.6 fts^2

The distance is 5 yards

i.e d= 5 yards

According to the equation of motion

2as= VF^2- Vi^2

Thus a=  (VF^2- Vi^2)/2s

a=  (1.6^2 - 0)/ 2*5

a=  0.256 ft/s^2

Nina [5.8K]2 years ago
5 0

Answer:

a= 17.69 m/s^2

Explanation:

Step one:

given data

A car accelerates uniformly from rest to 23 m/s

u= 0m/s

v= 23m/s

distance= 30m

Step two:

We know that

acceleration= velocity/time

also,

velocity= distance/time

23= 30/t

t= 30/23

t= 1.30 seconds

hence

acceleration= 23/1.30

accelaration= 17.69 m/s^2

You might be interested in
A ball is kicked at a speed of 16m/s at 33° and it eventually returns to ground level further down field.
saw5 [17]

Hi there!

We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).

Remember to break the velocity into its vertical and horizontal components.

Thus:

0 = vi - at

0 = 16sin(33°) - 9.8(t)

9.8t = 16sin(33°)

t = .889 sec

Find the max height by plugging this time into the equation:

Δd = vit + 1/2at²

Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²

Solve:

Δd = 7.747 - 3.873 = 3.8744 m

4 0
3 years ago
Read 2 more answers
Sam is recklessly driving 60 mph in a 30 mph speed zone when he suddenly sees the police. he steps on the brakes and slows to 30
barxatty [35]
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:

a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time

The solution is as follows;

a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²

2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
5 0
3 years ago
If a certain silver wire has a resistance of 3.00 Ï at 11.0°c, what resistance will it have at 25.0°c?
Romashka [77]
11.30      times the nuber of toys
7 0
3 years ago
Keeping the mass at 1.0 kg and the velocity at 10.0 m/s, record the magnitude of centripetal acceleration for each given radius
Paha777 [63]

Answer:

The centripetal acceleration for the first radius; 2.0 m = 50 m/s²

The centripetal acceleration for the second radius; 4.0 m = 25 m/s²

The centripetal acceleration for the third radius; 6.0 m = 16.67 m/s²

The centripetal acceleration for the fourth radius; 8.0 m = 12.5 m/s²

The centripetal acceleration for the fifth radius; 10.0 m = 10 m/s²

Explanation:

Given;

mass of the object, m = 1 kg

velocity of the object, v = 10 m/s

different values of the radius, 2.0 m 4.0 m 6.0 m 8.0 m 10.0 m

The centripetal acceleration for the first radius; 2.0 m

a_c = \frac{v^2}{r} \\\\a_c_1= \frac{(10)^2}{2} \\\\a_c_1= 50 \ m/s^2

The centripetal acceleration for the second radius; 4.0 m

a_c_2= \frac{(10)^2}{4} \\\\a_c_2= 25 \ m/s^2

The centripetal acceleration for the third radius; 6.0 m

a_c_3= \frac{(10)^2}{6} \\\\a_c_3= 16.67 \ m/s^2

The centripetal acceleration for the fourth radius; 8.0 m

a_c_4= \frac{(10)^2}{8} \\\\a_c_4= 12.5 \ m/s^2

The centripetal acceleration for the fifth radius; 10.0 m

a_c_5= \frac{(10)^2}{10} \\\\a_c_5= 10 \ m/s^2

6 0
3 years ago
A student wants to start a small business in school. Write down six items that
Fiesta28 [93]

Answer:

packets of pen

packets of pencil

copies

books

bottles

mask

3 0
3 years ago
Other questions:
  • What is the wavelength of an earthquake wave if it has a speed of 12 km/s and a frequency of 15 Hz
    7·1 answer
  • Does potential energy increase with temperature?
    5·2 answers
  • The conventional relatively small unit for work(ignoring time) such as raising one pound one foot is the foot-pound(ft. lb.). Si
    7·1 answer
  • Atoms from which two elements would form ionic bonds?
    12·1 answer
  • A 1460-kg submarine rises straight up towards the surface. Seawater exerts both an upward buoyant force of 16670 N on the submar
    9·1 answer
  • When reading the printout from a laser printer, you are actually looking at an array of tiny dots.
    9·1 answer
  • How many states a water has​
    12·2 answers
  • Sugar crystals enter a dryer at the rate of 1000 kg h-1 and at 20% w.b. moisture content. They leave the dryer at 3% w.b. moistu
    11·1 answer
  • Which of the following would be a valid method to increase the buoyant force acting on an object?
    10·2 answers
  • Question 2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!