Answer:
h = 51020.40 meters
Explanation:
Speed of the rifle, v = 1000 m/s
Let h is the height gained by the bullet. It can be calculated using the conservation of energy as :


h = 51020.40 meters
So, the bullet will get up to a height of 51020.40 meters. Hence, this is the required solution.
Answer:

Explanation:
The temperature in stratosphere is generally about 270 K
molecular weight of an ozone molecule = 48 gm/mole
now formula for most probable velocity

plugging the values we get


Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:

b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:

θ = 323 rad
Answer:
Frictional force increases with the increase in the roughness of the surface.
Explanation:
You will see that the rougher the surface, the greater the wear and tear.