The question is incomplete, the complete question is:
Which statements are consistent with Dalton's atomic theory as it was originally stated? Why?
a. Sulfur and oxygen atoms have the same mass.
b. All cobalt atoms are identical.
c. Potassium and chlorine atoms combine in a 1:1 ratio to form potassium chloride.
d. Lead atoms can be converted into gold.
<u>Answer: </u>The correct options are b) and c).
<u>Explanation:</u>
Some of the postulates of Dalton's atomic theory are:
- All matter is made of very tiny particles called atoms that participate in chemical reactions
- Atoms are indivisible particles that cannot be created or destroyed in a chemical reaction
- Atoms of a given element are identical in mass and chemical properties
- Atoms of different elements have different masses and chemical properties.
- Atoms combine in the ratio of small whole numbers to form compounds.
- The relative number and kinds of atoms are constant in a given compound.
For the given options:
<u>For a:</u>
The statement is inconsistent with the theory as no two elements can have the same mass. Only atoms of the same element can have the same mass.
This is consistent with the theory as atoms of the same element are identical.
This is consistent with the theory as atoms combine in a simple whole number ratio.
The statement is inconsistent with the theory as atoms of one element cannot be changed to atoms of other element.
Hence, the correct options are b) and c).
Answer:
what kind of chemistry is it going to be?
Answer:

Explanation:
Given that:

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

Multiplying (2) with equation (4) ; we have:

From equation (1) ; multiplying (-1) with equation (1); we have:

From equation (2); multiplying (3) with equation (2); we have:

Now; Adding up equation (5), (6) & (7) ; we get:



<u> </u>

<u> </u>
<u />
(According to Hess Law)


<span>294400 cal
The heating of the water will have 3 phases
1. Melting of the ice, the temperature will remain constant at 0 degrees C
2. Heating of water to boiling, the temperature will rise
3. Boiling of water, temperature will remain constant at 100 degrees C
So, let's see how many cal are needed for each phase.
We start with 320 g of ice and 100 g of liquid, both at 0 degrees C. We can ignore the liquid and focus on the ice only. To convert from the solid to the liquid, we need to add the heat of fusion for each gram. So multiply the amount of ice we have by the heat of fusion.
80 cal/g * 320 g = 25600 cal
Now we have 320 g of ice that's been melted into water and the 100 g of water we started with, resulting in 320 + 100 = 420 g of water at 0 degrees C. We need to heat that water to 100 degrees C
420 * 100 = 42000 cal
Finally, we have 420 g of water at the boiling point. We now need to pump in an additional 540 cal/g to boil it all away.
420 g * 540 cal/g = 226800 cal
So the total number of cal used is
25600 cal + 42000 cal + 226800 cal = 294400 cal</span>