Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH
To calculate number of moles, all you do is divide the given mass by the molecular molar mass:
<span>i.e. 125g / 18g = 6.94444g </span>
<span>Therefore, your answer is (a) 6.94 g</span>
The enthalpy change for an exothermic reaction is negative because heat is being released, so that takes out two of the responses. Since energy is being released into the surroundings due to the exothermic reaction, the potential energy of the products is lower than that of the reactants. Energy is being put in to make the reaction occur, but then that energy is all being released into the surroundings thus a lower potential energy level for the products
Answer: B
Explanation: to have a control, and many samples to investigate and cover the differences and anseretics.
Answer:
H_2O + 2CrO_4^2- + 3SO_3^2- -> 3SO_3^2- + 2CrO_2^- + 2OH^-
Explanation:
Reduction half reaction
2H_2O + CrO_4^2- + 3e -> CrO_2^- + 4OH^-
Oxidation half reaction
2OH^- + SO_3^2- -> SO_4^2- + H_2O + 2e
Balanced overall equation
H_2O + 2CrO_4^2- + 3SO_3^2- -> 3SO_3^2- + 2CrO_2^- + 2OH^-