Answer:
a) 4.04*10^-12m
b) 0.0209nm
c) 0.253MeV
Explanation:
The formula for Compton's scattering is given by:

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.
a) by replacing in the formula you obtain the Compton shift:

b) The change in photon energy is given by:

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.


Answer:
Take-off velocity = v = 81.39[m/s]
Explanation:
We can calculate the takeoff speed easily, using the following kinematic equation.

where:
a = acceleration = 4[m/s^2]
x = distance = 750[m]
vi = initial velocity = 25 [m/s]
vf = final velocity
![v_{f}=\sqrt{(25)^{2}+(2*4*750) } \\v_{f}=81.39[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D%5Csqrt%7B%2825%29%5E%7B2%7D%2B%282%2A4%2A750%29%20%7D%20%5C%5Cv_%7Bf%7D%3D81.39%5Bm%2Fs%5D)
Answer:
Explanation:
According to Newton's third law of motion, forces always act in equal but opposite pairs. Another way of saying this is for every action, there is an equal but opposite reaction. This means that when you push on a wall, the wall pushes back on you with a force equal in strength to the force you exerted. 1.True 2.falues 3.true 4. not really sure on this one