Answer and Explanation:
Data provided in the question
Carbon mass = m
Initial speed = v_i
Coefficient = μk
Based on the above information, the expressions are as follows
a. By using the energy considerations the expression for the carton moving distance is
As we know that

where,





b. The initial speed of the carton if the factor of 3 risen, so the expression is




Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
The question extends beyond what I already know.
The question makes me curious.
The first ariplanr was made December 17, 1903
I believe there are two correct answers, and those answers are A and D