Answer:
See explanation
Explanation:
The oxides or hydrides are formed by exchange of valency between the two atoms involved. The group of the atom bonded to oxygen or hydrogen in the binary compound can be deduced by considering the subscript attached to the oxygen or hydrogen atom.
Now let us take the journey;
R2O3- refers to an oxide of a group 13 element, eg Al2O3
R2O - refers to an oxide of group a group 1 element e.gNa2O
RO2 - refers to an oxide of a group 14, 15 or 16 element such as CO2, NO2 or SO2
RH2 - refers to the hydride of a group 12 element Eg CaH2
R2O7 - refers to an oxide of a group 17 element E.g Cl2O7
RH3- refers to a hydride of a group 13 element E.g AlH3
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
If fluorine is stronger than carbon, fluorine will receive a negative charge.
<h3>WHAT IS THE ELECTRONEGATIVITY SERIES?</h3>
The electronegativity series is the order in which elements of the periodic table are ranked in terms of their negative charges.
Elements with higher electron affinity are positioned higher in the series. According to this question, fluorine is stronger than carbon.
This means that fluorine will receive a negative charge (-) to become more electronegative.
Learn more about electronegativity series at: brainly.com/question/2060520
Cr.
Cr is the only element listed that is located in the d-block of the periodic table.