1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LuckyWell [14K]
3 years ago
7

What is the density of an object with a mass of 50 grams and a volume of 4 cm3

Physics
2 answers:
nadya68 [22]3 years ago
5 0

Answer:

12.5 gram/cubic centimeter

Explanation:

D= mass/volume

You divide 50 (mass) by 4 (volume)

This equals 12.5 grams per cubic centimeter

BlackZzzverrR [31]3 years ago
4 0
It should be 1.28 , sorry if I got it wrong
You might be interested in
A projectile is launched at an angle of 30 and lands 20 s later at the same height as it was launched. (a) What is the initial s
Pavlova-9 [17]

Answer:

(a) 196 m/s

(b) 490 m

(c) 3394.82 m

(d) 2572.5 m

Explanation:

First of all, let us know one thing. When an object is thrown in the air, it experiences two forces acting in two different directions, one in the horizontal direction called air resistance and the second in the vertically downward direction due to its weight. In most of the cases, while solving numerical problems, air resistance is neglected unless stated in the numerical problem. This means we can assume zero acceleration along the horizontal direction.

Now, while solving our numerical problem, we will discuss motion along two axes according to our convenience in the course of solving this problem.

<u>Given:</u>

  • Time of flight = t = 20 s
  • Angle of the initial velocity of projectile with the horizontal = \theta = 30^\circ

<u>Assume:</u>

  • Initial velocity of the projectile = u
  • R = Range of the projectile during the time of flight
  • H = maximum height of the projectile
  • D = displacement of the projectile from the initial position at t = 15 s

Let us assume that the position from where the projectile was projected lies at origin.

  • Initial horizontal velocity of the projectile = u\cos \theta
  • Initial horizontal velocity of the projectile = u\sin \theta

Part (a):

During the time of flight the displacement of the projectile along the vertical is zero as it comes to the same vertical height from where it was projected.

\therefore u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow u\sin \theta t=\dfrac{1}{2}(g)t^2\\\Rightarrow u=\dfrac{gt^2}{2\sin \theta t}\\\Rightarrow u=\dfrac{9.8\times 20^2}{2\sin 30^\circ \times 20}\\\Rightarrow u=196\ m/s

Hence, the initial speed  of the projectile is 196 m/s.

Part (b):

For a projectile, the time take by it to reach its maximum height is equal to return from the maximum height to its initial height is the same.

So, time taken to reach its maximum height will be equal to 10 s.

And during the upward motion of this time interval, the distance travel along the vertical will give us maximum height.

\therefore H = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow H = 196\times \sin 30^\circ \times 10 + \dfrac{1}{2}\times(-9.8)\times 10^2\\ \Rightarrow H =490\ m

Hence, the maximum altitude is 490 m.

Part (c):

Range is the horizontal displacement of the projectile from the initial position. As acceleration is zero along the horizontal, the projectile is in uniform motion along the horizontal direction.

So, the range is given by:

R = u\cos \theta t\\\Rightarrow R = 196\times \cos 30^\circ \times 20\\\Rightarrow R =3394.82\ m

Hence, the range of the projectile is 3394.82 m.

Part (d):

In order to calculate the displacement of the projectile from its initial position, we first will have to find out the height of the projectile and its range during 15 s.

\therefore h = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow h = 196\times \sin 30^\circ \times 15 + \dfrac{1}{2}\times(-9.8)\times 15^2\\ \Rightarrow h =367.5\ m\\r = u\cos \theta t\\\Rightarrow r = 196\times \cos 30^\circ \times 15\\\Rightarrow r =2546.11\ m\\\therefore D = \sqrt{r^2+h^2}\\\Rightarrow D = \sqrt{2546.11^2+367.5^2}\\\Rightarrow D =2572.5\ m

Hence, the displacement from the point of launch to the position on its trajectory at 15 s is 2572.5 m.

6 0
3 years ago
To be effective, an exercise program must be?
ExtremeBDS [4]

To be effective, an exercise program must have an aerobic form, portion for strength enhancement, and a stretching part. These three things are essential because they each target specific improvements in your body. For example, aerobics can help you maintain your body’s fitness or make it better. This usually targets your heart rate and ensures that you burn fat while doing so. Second is strength enhancement; this will make sure that your body becomes better – not just in a feeble state. Lastly is stretching, your muscles are like rubber bands. You cannot end or start your exercise program without stretching simply because they can damage your muscles as well. Aside from this, stretching can stop you from shocking your body into a physical activity, which may cause you to lose consciousness or have undue stress and fatigue. 

3 0
3 years ago
Read 2 more answers
Predict the products of the combustion of methanol, CH3OH(l).
gregori [183]

Answer:

Carbon dioxide and water

Explanation:

The products of complete combustion are always carbon dioxide and water.

The balanced reaction is:

4 CH₃OH + 3 O₂ → 4 CO₂ + 2 H₂O

8 0
3 years ago
Read 2 more answers
pulling one of the balls away from the other. To pull a ball away, click on the ball and drag it. What happens to the force arro
Soloha48 [4]
Gravity.: Gravity is the force that acts at a right angle to the path of an orbiting object.
7 0
3 years ago
Read 2 more answers
A positive charge +q1 is located to the left of a negative charge -q2. On a line passing through the two charges, there are two
AfilCa [17]

Answer:

please the answer below

Explanation:

(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

V_1=k\frac{q_1}{r-1.0}-k\frac{q_2}{1.0}=0\\\\V_2=k\frac{q_1}{r+5.2}-k\frac{q_2}{5.2}=0\\\\

k=8.89*10^9

For both cases we have

k\frac{q_1}{r-1.0}=k\frac{q_2}{1.0}\\\\q_1(1.0)=q_2(r-1.0)\\\\r=\frac{q_1+q_2}{q_2}\\\\k\frac{q_1}{r+5.2}=k\frac{q_2}{5.2}\\\\q_1(5.2)=q_2(r+5.2)\\\\r=\frac{5.2q_1-5.2q_2}{q_2}

(b) by replacing this values of r in the expression for V we obtain

k\frac{q_1}{\frac{5.2(q_1-q_2)}{q_2}+5.2}=k\frac{q_2}{5.2}\\\\\frac{q_1}{q_2}=\frac{(q_1-q_2)}{q_2}-1.0=\frac{q_1-q_2-q_2}{q_2}=\frac{q_1-2q_2}{q_2}

hope this helps!!

3 0
3 years ago
Read 2 more answers
Other questions:
  • An open container holds ice of mass 0.500kg at a temperature of -16.1?C . The mass of the container can be ignored. Heat is supp
    12·1 answer
  • Why is it useful to calculate average speed?
    6·1 answer
  • Which statements describe a closed circuit? Check all that apply. Bulbs will shine. Bulbs will not shine. The circuit is incompl
    15·2 answers
  • An astronaut of mass m in a spacecraft experiences a gravitational force F=mg when stationary on the launchpad.
    15·1 answer
  • Both X-rays and gamma rays have higher frequencies than ultraviolet rays <br> True or False
    10·2 answers
  • Mess up my notes please part 1
    9·2 answers
  • Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approxim
    15·1 answer
  • A pendulum consists of a 2.0-kg block hanging on a 1.5-m length string. A 10-g bullet moving with a horizontal velocity of 900 m
    15·1 answer
  • Why does the moon appear to change its shape as seen from Earth
    6·1 answer
  • What is the kinetic energy of a 3000kg object moving at a velocity of 300m/s?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!