1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
2 years ago
5

A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein

g pumped into the tank at the rate of 8 meters3/sec. Find the rate, in meters/sec, at which the gasoline level is rising when the gas is 4 meters deep. Give 2 decimal places for your answer. Type your answer in the space below. If your answer is a number less than 1, place a leading "0" before the decimal point (ex: 0.35).

Physics
1 answer:
RSB [31]2 years ago
3 0

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

You might be interested in
What minimum speed must the block have at the base of the 70 m hill to pass over the pit at the far (right-hand) side of that hi
Drupady [299]

Answer:

initial velocity is v = 4.95 m / s

Explanation:

To solve this exercise we use the projectile launch ratios, when the block leaves the hill its speed is horizontal, let's find the time it takes to fall to the other point.

Initial vertical velocity is zero

          y = y₀ + v_{oy} t - ½ g t²

          y-y₀ = 0 -1/2 g t²

          t = \sqrt{ \frac{ 2(y_o -y)}{g} }

calculate

          t = \sqrt{ \frac{2 ( 70-50)}{9.8} }

          t = 2.02 s

with this time we can substitute in the horizontal displacement equation

          x = v₀ₓ t

          v₀ₓ = x / t

suppose that the distance between the two points is x = 10 m

          v₀ₓ = 10 / 2.02

          v₀ₓ = 4.95 m / s

initial velocity is v = 4.95 m / s

4 0
3 years ago
Which is true about density?
Anton [14]

Answer:

Density is independent of the

amount of the sample. (D)

Explanation:

Because density is an intrinsic property of matter.

hope it helps!

3 0
2 years ago
Read 2 more answers
What force in Newton is required to accelerate a car starting from rest to 20 m/s in 15 seconds if the mass of the car is 2500 k
Lyrx [107]

We will solve this question using the second law of motion which states that force is directly equal to the product of mass and acceleration.

\sf \: F=ma

Where,

  • F is force
  • m is mass
  • a is acceleration

In our case,

  • F = ?
  • m = 2500 kg
  • a = 20m/s

\tt \: F_{net}  = 2500 \times 20 \\   \tt= 50000

<em>Thus, The force of 50000 Newton is required to accelerate a car of 2500 kg...~</em>

3 0
2 years ago
Read 2 more answers
Salmon often jump waterfalls to reach their
PilotLPTM [1.2K]

The minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

The given parameters;

  • height of the waterfall, h = 0.432 m
  • distance of the Salmon from the waterfall, s = 3.17 m
  • angle of projection of the Salmon, = 30.8º

The time of motion to fall from 0.432 m is calculated as;

h = v_0_y + \frac{1}{2} gt^2\\\\0.432 = 0 + (0.5\times 9.8)t^2\\\\0.432 = 4.9t^2\\\\t^2 = \frac{0.432}{4.9} \\\\t^2 = 0.088\\\\t = \sqrt{0.088} \\\\t = 0.3 \ s

The minimum velocity of the Salmon jumping at the given angle is calculated as;

X = v_0_x t\\\\3.17 = (v_0\times cos(30.8)) \times 0.3\\\\10.567 = v_0\times cos(30.8)\\\\v_0 = \frac{10.567}{cos(30.8)} \\\\v_0 = 12.3 \ m/s

Thus, the minimum velocity of the Salmon jumping at the given angle is 12.3 m/s.

Learn more here: brainly.com/question/20064545

8 0
2 years ago
When an atom that has no charge looses two electrons it becomes a
alex41 [277]

Answer: it becomes a positive ion

Explanation:

So, when an atom loses 2 electrons there will be no change in the number of neutrons. Therefore, an isotope will not form. Thus, it is concluded that when an atom with no charge loses two electrons, it becomes a positive ion.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Eclipse of the sun occurs(A).When the moon is between the sun and the earth.(B).
    12·1 answer
  • The 0.100 kg sphere in (Figure 1) is released from rest at the position shown in the sketch, with its center 0.400 m from the ce
    9·1 answer
  • A metal tool is sharpened by being held against the rim of a wheel on a grinding machine by a force of 180 N. The frictional for
    13·1 answer
  • A circular bird feeder of radius R and moment of inertia I is suspended at its center by a thin wire. (The feeder is oriented in
    15·1 answer
  • A block of 1 kg with a speed 1 m/s hits a spring placed horizontally as shown in the figure. If spring constant is 1000 N/m, fin
    14·1 answer
  • A rocket of mass 1200kg is travelling at 2000m/s .It fires its engine for 1 min .The forwarded thrust provided by the rocket eng
    6·1 answer
  • Define Kinetic Energy:
    10·2 answers
  • Which example is correctly matched with its type of friction?
    8·1 answer
  • Which of the following is 8000 written in scientific notation?
    12·1 answer
  • Calculate the reading on voltmeter v²​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!