Answer:
μ = 0.109
Explanation:
Draw a free body diagram of the crate. There are four forces:
Weight force mg pulling down.
Normal force N pushing up.
Applied force P pulling at θ above the horizontal.
Friction force Nμ pushing to the left.
Sum of the forces in the y direction:
∑F = ma
N + P sin θ − mg = 0
N = mg − P sin θ
Sum of the forces in the x direction:
∑F = ma
P cos θ − Nμ = ma
P cos θ − ma = Nμ
μ = (P cos θ − ma) / N
μ = (P cos θ − ma) / (mg − P sin θ)
Given:
P = 585 N
θ = 28.0°
m = 125 kg
a = 3.30 m/s²
μ = (585 cos 28.0° − 125 kg × 3.30 m/s²) / (125 kg × 9.8 m/s² − 585 sin 28.0°)
μ = 0.109
Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
It’s physical something you can physically do
Answer:
Using the given values
F = K q^2 / r^2 = 9 * 10E9 * (1.6 * E-19)^2 / (5.18 * E-15)^2 N
E = 9 * 1.6^2 / 5.18^2 * 10 = 8.5 N