The area-
The area under the line in a velocity-time graph represents the distance travelled. To find the distance travelled in the graph above, we need to find the area of the light-blue triangle and the dark-blue rectangle.
<span><span>Area of light-blue triangle -
<span>The width of the triangle is 4 seconds and the height is 8 meters per second. To find the area, you use the equation: <span>area of triangle = 1⁄2 × base × height </span><span>so the area of the light-blue triangle is 1⁄2 × 8 × 4 = 16m. </span></span></span><span> Area of dark-blue rectangle
The width of the rectangle is 6 seconds and the height is 8 meters per second. So the area is 8 × 6 = 48m.</span><span> Area under the whole graph
<span>The area of the light-blue triangle plus the area of the dark-blue rectangle is:16 + 48 = 64m.<span>This is the total area under the distance-time graph. This area represents the distance covered.</span></span></span></span>
 
        
        
        
Answer:
(a) The range of the projectile is 31,813.18 m
(b) The maximum height of the projectile is 4,591.84 m
(c) The speed with which the projectile hits the ground is 670.82 m/s.
Explanation:
Given;
initial speed of the projectile, u = 600 m/s
angle of projection, θ = 30⁰
acceleration due to gravity, g = 9.8 m/s²
(a) The range of the projectile in meters;

 (b) The maximum height of the projectile in meters;

(c) The speed with which the projectile hits the ground is;

 
        
             
        
        
        
Answer: 211.059 m
Explanation:
We have the following data:
 The angle at which the ball leaves the bat
 The angle at which the ball leaves the bat
 The initial velocity of the ball
 The initial velocity of the ball
 The acceleration due gravity
 The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
 (1)
 (1)
 (2)
 (2)
<u>Vertically:</u>
 (3)
 (3)
 (4)
 (4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when  and the time
 and the time  is half the time it takes the complete parabolic path.
 is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find  :
:
 (5)
 (5)
Isolating  :
:
 (6)
 (6)
 (7)
 (7)
 (8)
 (8) 
Now that we have the time it takes to the ball to travel half of is path, we can find the total time  it takes the complete parabolic path, which is twice
 it takes the complete parabolic path, which is twice  :
:
 (9)
 (9)
With this result in mind, we can finally calculate how far the ball travels in the air:
 (10)
 (10)
Substituting (2) and (9) in (10):
 (11)
 (11)
Finally:
 
 
 
        
             
        
        
        
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum
        
             
        
        
        
Answer:
B
Explanation:
Because vector Y is longer than vector X
so when you take a magnitude( without minus ) each other 
you see that Y>X