1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
3 years ago
11

How can some of the difficulties caused by the Down Syndrome be over come?

Chemistry
1 answer:
Salsk061 [2.6K]3 years ago
4 0
There is no single, standard treatment for down syndrome.
You might be interested in
Determine the limiting reactant (lr) and the mass (in g) of nitrogen that can be formed from 50.0 g n2o4 and 45.0 g n2h4. some p
Licemer1 [7]
                                                   N2O4(l) + 2 N2H4(l) → 3 N2(g) + 4 H2O(g)
1) to calculate the limiting reactant you need to pass grams to moles.
<span> moles is calculated by dividing mass by molar mass
</span>
mass of N2O4: 50.0 g 
molar mass of <span>N2O4 = 92.02 g/mol
</span><span>molar mass of N2H4 = 32.05 g/mol.
</span>mass of N2H4:45.0 g

moles N2O4=50.0/92.02 g/mol= 0,54 mol of N2O4
moles N2H4= 45/32.05 g/mol= 1,40 mol of <span><span>N2H4

</span> 2)</span>
By looking at the balanced equation, you can see that 1 mol of N2O4 needs 2 moles of N2H4 to fully react . So to react  0,54 moles of N2O4, you need 2x0,54 moles of <span>N2H4 moles
</span><span>N2H4 needed = 1,08 moles.
You have more that 1,08 moles </span><span>N2H4, so this means the limiting reagent is not N2H4, it's </span>N2O4. The molecule that has molecules that are left is never the limiting reactant.

3) 1 mol of N2O4 reacting, will produce 3 mol of N2 (look at the equation)
There are 0,54 mol of N2O4 available to react, so how many moles will produce of N2?
1 mol N2O4------------3 mol of N2
0,54 mol N2O4--------x
x=1,62 mol of N2

4) the only thing left to do is convert the moles obtained, to grams.
We use the same formula as before, moles equal to mass divided by molar mass.
moles= \frac{grams}{molar mass}             (molar mass of N2= 28)
1,62 mol of N2= mass/ 28
mass of N2= 45,36 grams

4 0
3 years ago
What is the answer slam sms
Musya8 [376]
The answer is C
wood isn't a conductor but metal is


4 0
3 years ago
Read 2 more answers
The sink-float method is often used to identify the type of glass material found at crime scenes by determining its density.
Olegator [25]

Answer:

<em><u>Glass that will sink</u></em>

  • alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL

  • potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL

<em><u>Glass that will float</u></em>

  • soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL

  • alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL

<em><u>Glass that will not sink or float</u></em>

  • potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL

Explanation:

Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.

So, the mathematical expression for the density is:

  • density = mass / volume

By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.

The greater the density of an object the more it will try to sink in the liquid.

As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.

The flotation condition may be summarized by:

  • When the density of the object < density of the liquid, the object will float
  • When the density of the object = density of the liquid: the object will neither float nor sink
  • When the density of the object > density of the liquid: the object will sink.

<em><u>Glass that will sink</u></em>

  • alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.

  • potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.

<u><em>Glass that will float</em></u>

  • soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.

  • alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.

<em><u>Glass that will not sink or float</u></em>

  • potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
8 0
3 years ago
*URGENT* Question 3: Chemical Bonds (1 point)
Evgen [1.6K]

Answer:

A) Ionic bond

___transfer of electrons

B) Covalent bond

___sharing of electrons

C) Metallic bond

___freely moving electrons

4 0
3 years ago
Sodium inside a star is most likely formed by which process?
AURORKA [14]

Answer:

b

Explanation:

beta emission

8 0
3 years ago
Read 2 more answers
Other questions:
  • A sample of a gaseous substance at 25 celcius and 0.862 atm has a density of 2.26 g/l. what is the molecular weight
    6·1 answer
  • What is the function of this instrument?
    14·1 answer
  • Ammonium nitrate decomposes to dinitrogen monoxide and water. If given 45.7 grams of ammonium
    12·1 answer
  • A 25.0 g piece of aluminum (which has a molar heat capacity of 24.03 J/mol°C) is heated to 86.4°C and dropped into a calorimeter
    6·1 answer
  • How many moles of hcl are present in 40.0 ml of a 0.035 m solution?
    7·1 answer
  • What are three a ways orchids attract insects to spread their flower pollen
    6·1 answer
  • Can you determine the average atomic mass for an element if you know only the atomic number and mass number of an atom? If not,
    5·1 answer
  • What is the gram formula mass of AuCI2?
    12·1 answer
  • An alkane group has a formula of CxH6, determine the value of x​
    6·2 answers
  • Uranium, an important component of both nuclear weapons and nuclearreactors, has two major isotopes, U-238, which has a half-lif
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!