v + m = 32 and v = 5 + 2m are the equations that are used to determine m, the number of stuffed animals Mariposa has
Number of stuffed animals Mariposa has is 9 and number of stuffed animals with Veronica is 23
<h3>
<u>Solution:</u></h3>
Let "v" be the number of stuffed animals with Veronica
Let "m" be the number of stuffed animals with Mariposa
Given that,
Together, they have 32 stuffed animals
Therefore,
v + m = 32 --------- eqn 1
Veronica has 5 more than double the number of stutted animals as her friend Mariposa
Therefore,
Number of stuffed animals with Veronica = 5 + 2(number of stuffed animals with Mariposa)
v = 5 + 2m ---------- eqn 2
Thus eqn 1 and eqn 2 can be used to determine m, the number of stuffed animals Mariposa has
Let us solve eqn 1 and eqn 2
Substitute eqn 2 in eqn 1
5 + 2m + m = 32
5 + 3m = 32
3m = 32 - 5
3m = 27
<h3>m = 9</h3>
Substitute m = 9 in eqn 2
v = 5 + 2(9)
v = 5 + 18
<h3>v = 23</h3>
Thus number of stuffed animals Mariposa has is 9 and number of stuffed animals with Veronica is 23
true, both have a domain limited to x values great then 0
Answer:
-56
Step-by-step explanation:
(6 ✕–8) – 8
–48–8
= –56
<span> 7x+2y=5;13x+14y=-1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
</span>System of Linear Equations entered :<span><span> [1] 7x + 2y = 5
</span><span> [2] 13x + 14y = -1
</span></span>Graphic Representation of the Equations :<span> 2y + 7x = 5 14y + 13x = -1
</span>Solve by Substitution :
// Solve equation [2] for the variable y
<span> [2] 14y = -13x - 1
[2] y = -13x/14 - 1/14</span>
// Plug this in for variable y in equation [1]
<span><span> [1] 7x + 2•(-13x/14-1/14) = 5
</span><span> [1] 36x/7 = 36/7
</span><span> [1] 36x = 36
</span></span>
// Solve equation [1] for the variable x
<span><span> [1] 36x = 36</span>
<span> [1] x = 1</span> </span>
// By now we know this much :
<span><span> x = 1</span>
<span> y = -13x/14-1/14</span></span>
<span>// Use the x value to solve for y
</span>
<span> y = -(13/14)(1)-1/14 = -1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
<span>
Processing ends successfully</span></span>