Answer:
These properties are basically the inverse of each other.
Explanation:
- Electronegativity is the tendency of an atom to attract an electron and make it a part of its orbital.
Ionization enthalpy, is the energy required to remove an electron from an atom.
- More electronegative atoms have high ionization enthalpies If the energy required to remove an electron is less, i.e. the atom has more tendency to give electron, it would thus have less tendency to take electron.
- Values and tendency of electronegativity in the periodic table: In general, the electronegativity of a non‐metal is larger than that of metal. For the elements of one period the electronegativities increase from left to right across the periodic table. For the elements of one main group the electronegativities decrease from top to bottom across the periodic table. To the subgroup elements, there’s no regular rule.
- Values and tendency of ionization potential in the periodic table: The first ionization energy is the energy which is required when a gaseous atom/ion loses an electron to form a gaseous +1 valence ion. The energy which is required for a gaseous +1 valence ion to loose an electron to form a gaseous +2 valence ion, is called the second ionization energy of an element. In general, the second ionization energy is higher than the first ionization energy of an element.
The first ionization energies of the elements of one period increase from the left to the right across the periodic table. According to the elements of main group, the first ionization energies generally decreases from top to bottom across the periodic table.
The statement which best describes the law of conservation of mass is A) when a physical or a chemical change occurs, matter is not created or destroyed. The law states that matter cannot be created or destroyed by ordinary chemical or physical changes, which means that <span>the mass of all the components of a chemical reaction can be measured before and after the change in order prove that the mass is constant. So, keep in mind that </span><span>the mass of participating products is always the same as the mass of all the reactants.</span>
Color, the other answers arent changing the substance into something different
Answer:
C. All electron carriers are mobile and hydrophobic
Explanation:
Hello,
In this case, it is widely known that the electron carriers move inside the inner mitochondrial membrane and consequently move electrons from one to another. In such a way, they are mobile, therefore they are largely hydrophobic as long as they are inside the membrane.
For instance, the cytochrome c is a water-soluble protein in a large range, therefore, the answer is: C. All electron carriers are mobile and hydrophobic.
Best regards.
A grounding electrode is any object that directly links to the earth. They are most times used to divert electricity from the elements.
- Swimming pool structures and structural <u>reinforcing steel. 250.52(B)(3)</u><u>,</u> [680.26(B)(1), and (B)(2)] shall not be used as a grounding electrode.
In code 250.52(B)(3) it is clearly specified that the bonding grid and reinforcing steel that is related to a pool should not be used as grounding electrodes.
This is essential because when a metal that lies beneath a swimming pool is used as a grounding electrode, current from nearby electrical systems can be introduced into the pool.
This could cause the electrocution of anybody in the swimming pool at that time.
Learn more here:
brainly.com/question/14681208