The vital capacity will be 4600ml.
<h3>What is
vital capacity?</h3>
The highest amount of air a person can inhale following their maximal exhalation is known as their vital capacity. It is equivalent to the total of the inspiratory, tidal, and expiratory reserve volumes. It roughly corresponds to Forced Vital Capacity. A wet or conventional spirometer can assess a person's vital capacity.
Normal people have a 3 to 5-liter vital capacity.
It enables simultaneous inhalation of the greatest possible volume of clean air and exhalation of the greatest possible volume of stale air. So, by increasing gaseous exchange between the body's various tissues, it improves the amount of energy available for bodily function.
VC = TV₊IRV₊ERV
where,
VC = Vital capacity
TV = Tidal volume
IRV = inspiratory reserve volume
ERV = expiratory reserve volume
VC = 500 ₊ 3000 ₊ 1100
VC = 4600ml
Therefore, the vital capacity will be 4600ml.
To know more about vital capacity refer to: brainly.com/question/14877276
#SPJ4
Answer:
hi im new because of its solid state
Explanation:
The best description for the relationship between the products and the reactants in an exothermic reaction is C. The potential energy of the products is less than the potential energy of the reactants.
Answer:
For Covalent bonds, atoms tend to share their electrons with each other to satisfy the Octet Rule. It requires 8 electrons because that is the amount of electrons needed to fill a s- and p- orbital (electron configuration); also known as a noble gas configuration
Explanation:
Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>