Answer:
1.200g
Explanation:
At the top it's 0 and that scale goes by 10s
The middle scale is 1 and it goes by 1s
The bottom scale is .2 and it goes by .1s
1+.2= 1.2 the extra zeroes are just place holders
1.200g
Determine the mass in grams of each element in the sample. If you are given percent composition, you can directly convert the percentage of each element to grams.
For example, a molecule has a molecular weight of 180.18 g/mol. It is found to contain 40.00% carbon, 6.72% hydrogen and 53.28% oxygen.
Convert the percentages to grams.
40.00 grams of carbon
6.72 grams of hydrogen
53.28 grams of oxygen
Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184
- m= 32 g
- ΔT= Tfinal - Tinitial= 22°C - 8°C= 14°C
Replacing:
Q= 32 g* 4.184 *14 °C
Solving:
Q= 1,874.432 J
<u><em>The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J</em></u>