Chemical energy being changed into light energy would happen during phototsynthesis
Answer:
the particles, molecules, and gas range from smallest to largest in the following order: electron < proton < atom <...
Answer:
- <em>Chemical equations are balanced </em><u>to comply with the law of conservation of mass.</u>
Explanation:
Law of conservation of mass states that matter cannot be either created or destroyed.
A skeleton chemical equation shows the reactants and products of a chemical reaction without taking into account the real proportion in which the reactants combine and the products are obtained.
An example of a skeleton reaction is the combustion of methane:
Such as that equation is shown, there are four atoms of hydrogen in the reactants but only 2 atoms of hydrogen in the products. Also, there are 2 atoms of oxygen in the reactants but three atoms of oxygen in the products. This seems to show that some atoms of hydrogen have been destroyed and some atoms of oxygen have been created. This is impossible as it is against the law of conservation of matter.
Then, to show a real situation, the chemical equation of combustion must be balanced, adjusting the coefficients. This is the balanced chemical equation:
Now you see that the number of atoms of each matter is conserved: the number of carbon atoms in each side is 1, the number of atoms of hydrogen in each side is 4, and the number of atoms of oxygen in each side is 4. Thus, by balancing the chemical equation, the law of conservation of mass is not violated.
Answer:
0.017 mole of Pb(NO₃)₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KOH + Pb(NO₃)₂ —> 2KNO₃ + Pb(OH)₂
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted to produce 2 moles of KNO₃.
Finally, we shall determine the number of mole of Pb(NO₃)₂ required to produce 0.034 mole of KNO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of Pb(NO₃)₂ reacted to produce 2 moles of KNO₃.
Therefore, Xmol of Pb(NO₃)₂ will react to produce 0.034 mole of KNO₃ i.e
Xmol of Pb(NO₃)₂ = 0.034 / 2
Xmol of Pb(NO₃)₂ = 0.017 mole.
Thus, 0.017 mole of Pb(NO₃)₂ is needed for the reaction.
<span> It is important to keep the NaOH solution covered at all time because sodium hydroxide is a very good remover of Carbon dioxide from the air means sodium hydroxide absorbs the carbon dioxide from the air react with that so the concentration of your solution will also change if you uncover the NaOH.
The following reaction occurs when sodium hydroxide reacts with carbon dioxide;
</span><span>2 NaOH(aq) + CO2(g) --> Na3CO3(aq) + H2O(l) </span>