Answer:
e. The net magnetic flux in this case would be equal to zero.
Explanation:
As per Gauss law of magnetism we need to find the net magnetic flux through a closed loop
here we know that net magnetic flux is the scalar product of magnetic field vector and area vector
so here we have
= net magnetic flux
since we know that magnetic field always forms closed loop so if we find the integral over a closed loop
then in that case the value of the close integral must be zero
so correct answer would be
e. The net magnetic flux in this case would be equal to zero.
Answer:
3.6 KJ
Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy
The workdone = the energy.
There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )
P.E = mgh
P.E = 70 × 9.8 × 1.6
P.E = 1097.6 J
P.E = 1.098 KJ
K.E = 1/2mv^2
K.E = 1/2 × 70 × 8.5^2
K.E = 2528.75 J
K.E = 2.529 KJ
The non conservative workdone = K.E + P.E
Work done = 1.098 + 2.529
Work done = 3.63 KJ
Therefore, the non conservative workdone is 3.6 KJ approximately
<span>The entire time the ball is in the air, its acceleration is 9.8 m/s2 down provided this occurs on the surface of the Earth. Note that the acceleration can be either 9.8 m/s2 or -9.8 m/s2.
[Please Mark as Brainliest]
</span>
Answer:
<em>a) 3.56 x 10^22 N</em>
<em>b) 3.56 x 10^22 N</em>
<em></em>
Explanation:
Mass of the sun M = 2 x 10^30 kg
mass of the Earth m = 6 x 10^24 kg
Distance between the sun and the Earth R = 1.5 x 10^11 m
From Newton's law,
F =
where F is the gravitational force between the sun and the Earth
G is the gravitational constant = 6.67 × 10^-11 m^3 kg^-1 s^-2
m is the mass of the Earth
M is the mass of the sun
R is the distance between the sun and the Earth.
Substituting values, we have
F = = <em>3.56 x 10^22 N</em>
<em></em>
A) The force exerted by the sun on the Earth is equal to the force exerted by the Earth on the Sun also, and the force is equal to <em>3.56 x 10^22 N</em>
b) The force exerted by the Earth on the Sun = <em>3.56 x 10^22 N</em>
Answer:
Temperature increase = 2.1 [C]
Explanation:
We need to identify the initial data of the problem.
v = velocity of the copper sphere = 40 [m/s]
Cp = heat capacity = 387 [J/kg*C]
The most important data given is the fact that when the shock occurs kinetic energy is transformed into thermal energy, therefore it will have to be: