If the distance around the equator is reduced by half, then the radius is also reduced by half.
Since the acceleration due to gravity is proportional to 1/(radius²),
the acceleration changes by a factor of 1/(1/2)² = 1/(1/4) = <em>4 </em>.
The acceleration due to gravity ... and also the weight of everything on Earth ...
becomes <em>4 times what it is now</em>.
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Hello,
The answer is "universe, Milky Way, clusters, stars, planets".
Reason:
The universe would be the biggest because it has all the galaxy's, starts, clusters, and planets into one. Then it would be Milky Way because this is a galaxy that contains: stars, planets, and clusters. Then it would be clusters because that contains stars, or planets in one group. Then be stars because stars are bigger than planets. Then it would be planets. Therefore the order should go like this: <span>Milky Way, universe, planets, clusters, and stars.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit</span>