Answer:
The magnitude of the acceleration of the tip of the minute hand of the clock
.
Explanation:
Given that,
Length of minute hand = 0.55 m
Length of hour hand = 0.26 m
The time taken by the minute hand to complete one revelation is

We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the magnitude of the acceleration of the tip of the minute hand of the clock
Using formula of acceleration

Put the value into the formula


Hence, The magnitude of the acceleration of the tip of the minute hand of the clock
.
Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N
Answer:
Explanation:
The hand provides Kinetic Energy in moving.
The KE is transformed to Frictional energy
The Frictional Energy can produce heat and light energy.
The sandpaper produces little shreds from the grit of the paper.
The shreds have KE (they move)
A cloud in space that is composed of dust and gas is call a nebula. The word "nebula" is derived from the Latin word for "cloud," and nebulae in space are indeed large interstellar clouds made up of dust, hydrogen, helium and plasma.
Answer:
trees
Explanation:
referring to the tree to prove his/her point.