1) The metal which reduces the other compound is the one higher in the reactivity. So in this case it is
.
2) The substance which brings about reduction while itself getting oxidised (that is losing electrons) is called a reducing agent. Here, $\mathrm{Zn}$ is the reducing agent and reduces Cobalt Oxide to Cobalt while itself getting oxidised to Zinc oxide.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
The heavy atom count of a casein molecule is 143 I believe
<span>By definition:
pH = pKa + log [acetate]/ [acetic acid]
so
5.02 = 4.74 + log [acetate] / 10 mmole
10mmole = 10/1000 = 0.01 mole
5.02 = 4.74 + log [acetate] / 0.01
5.02 - 4.74 = 0.28 = log [acetate] /0.01
10^0.28 = </span><span>1.90546</span> = [acetate] / 0.01 <span>
[acetate] = 0.019 mole
= 19 millimoles
</span>