Answer:
Explanation:
refractive index of ember = sin of angle of incidence / sin of angle of refraction
= sin 35 / sin24
= .5735 / .4067
= 1.41
This is refractive index of ember with respect to water
refractive index of ember with respect to water
= wμe = μe / μw
μe = wμe x μw
= 1.33 x 1.41
= 1.87
refractive index of ember with respect to air = 1.87 .
Please be more specific because they all transmit signals but the most common one is the radio wave because it transmits cellphone , televition and radio signals
Answer:
c. V = k Q1 * Q2 / R1 potential energy of Q1 and Q2 separated by R
V2 / V1 = (R1 / R2) = 1/4
V2 = V1 / 4
Answer: Mass of the object is 75 kg.
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean