Answer:
(A) Velocity will be 1.88 m/sec
(b) Force will be 187.45 N
Explanation:
We have given work done = 4780 j
Distance d = 25.5 m
(A) Mass of the truck m = 
We know that kinetic energy is given by

So 
(B) We know that work done is given by
W = Fd
So 
<span>force applied causes movement of an object in the same direction as the applied force.</span>
we know the equation for the period of oscillation in SHM is as follows:
T = 2 * pi * sqrt(mass/k)
we know f = 1/T, so f = 1/(2 * pi) * sqrt(k/m).
since d = v*T, we can say v = d/t = d * f
the final equation, after combining everything, is as follows:
v = d/(2 * pi) * sqrt(k/m)
by plugging everything in
v = .75/(2 * pi) * sqrt((1 * 10^5)/(30))
We find our velocity to be:
v = 6.89 m/s
Answer:
the equilibrium constant is equal to 1 (i.e., the reactant and product concentrations are always equal).
Explanation:
ΔG is a symbol related to Gibbs free energy, which is a physical quantity related to thermodynamics. ΔG refers to the difference between the change in enthalpy (and sometimes entropy) and the temperature of a chemical reaction.
Gibbs free energy is very useful for measuring the work done between the reactants in a reaction. It is calculated using the formula: ΔG = change in enthalpy - (temperature x change in entropy).
The ΔG of a reaction would have a minimum value (zero), if the equilibrium constant is equal to 1 (that is, the concentrations of the reagent and the product are always equal).
<span>Answer:
True: A, C, E
False: B, D
The following representation of this orbital, 5dx2â’y2, depicted when it is bisected by the xy plane, shows the effect of the radial nodes on the orbital contours.</span>