You have to use Avogadro's number (6.02x10^23 molecules/mole) to find the number of moles each reactant starts off with.
moles of Fe and O₂:
12 atoms/(6.02x10^23 atoms/mole)=1.99x10^-23 mol Fe
6 molecules/(6.02x10^23 molecules/mole)=9.967x10^-24 mol <span>O₂
</span>Then you find the limiting reagent by finding how much product each given amount of reactant can make. Which ever one produces the least amount of product is the limiting reagent.
amount of Fe₂O₃ produced:
<span>(1.99x10^-23 mol Fe)x(2mol/4mol)= 9.967x10^-24mol Fe</span>₂O₃<span>
</span>(9.967x10^-24 mol O₂)x(2mol/3mol)= 6.645x10^-24 mol Fe₂O₃<span>
</span>since oxygen produces the leas amount of product, oxygen is the limiting reagent. since we know that oxygen is the limiting reagent we can use the amount of product formed with oxygen to find the amount of iron used.
6.645x10^-24 mol Fe₂O₃x(4mol/2mol)=1.329x10^-23 mol Fe consumed
<span> find the amount left over by subtracting the original amount of Fe by the amount consumed in the reaction.
</span>1.993x10^-23-1.329x10^-23= 6.645x10^-23mol Fe left
find the number of atoms by multiplying that by Avogadro's number.
<span>(6.645x10^-23mol)x(6.02x10^23 atoms/mol)=4 atoms
</span>therefore 4 atoms of Fe will be left over after the reaction happens.
I hope this helps.
Answer:
Calcium is more reactive than magnesium because calcium atom is larger than magnesium atom and it has one more energy level. ... Thus Ca is more reactive than Mg.
Answer:
A variable shape that adapts to fit its container.
It has mass and takes up space is correct.
Explanation:
Monitor the temperature of the water with the thermometer. Stop heating the water once it nears the boiling point of 100 degrees Celsius. Add copper(II) sulfate and stir until the heated solution is saturated. When the solution is saturated, copper(II) sulfate will not dissolve anymore