As the volume of a gas increases <em>at constant temperature</em>, the number of particle impacts per unit area decreases.
There is the same number of impacts, but they are spread over a larger surface area.
Thus, the number of impacts per unit area decreases.
Answer:
#1- the percentage is 2.77%
#2 - 218.1336g
#3- 7.89%
#4- 63.8489g
#5- 136.1406g
#6- 340.3515g
#7- 2.387238
#8-
Explanation:
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
State the periodic law and explain how it relates to the periodic table.