Answer:
4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
Explanation:
The balanced equation for the reaction between silicon dioxide and carbon at high temperature is given as:

1 mole silicon dioxide reacts with 3 moles of carbon to give 1 moles of silicon carbide and 2 moles of carbon monoxide.
Mass of SiC = 3.00kg = 3000.00 g
1 kg = 1000 g
Molecular mass of SiC = 40 g/mol
Moles of SiC = 
According to reaction, 1 mole of SiC is produced from 1 mole of silicon dioxide.
Then 75 moles of SiC will be produce from:
of silicon dioxide.
mass of 75 moles of silicon dioxde:

4.5 kilograms of silicon dioxide is required to produce 3.00 kg of SiC.
The structural formula of <span>s-allylcysteine is shown in the picture (top figure). To create its Lewis structure, draw all its bonds between elements. Each single bond contains two electrons. There is an octet rule that must be obeyed by most elements. Each element should be surrounded with 8 electrons. The hydrogen is exempted of this rule. So, there are 4 lone pairs for the S atom, 1 lone pair for the N atom, and 2 lone pairs each for the 2 O atoms.</span>
<span>C4H4
The compound in question has an equal ratio of hydrogen and carbon. The atomic weight of carbon is roughly 12 and the atomic weight of hydrogen is roughly 1. The mass of the compound in question is roughly 52.
52/13=4
C4H4</span>
I recently wrote a paper on animal testing
Pretty sure it was Galen