1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
9966 [12]
2 years ago
11

A gas has an initial volume o.25m^3, and absolute pressure 100kPa. Its initial temperature is 290k. The gas is compressed into a

volume of o.O5m^3 during which its temperature rises to 405k. Calculate its final pressure using the formula . P1V1/T1=p2V2/t2
Engineering
1 answer:
dezoksy [38]2 years ago
5 0

Answer:

<h2>698.3Kpa</h2>

Explanation:

Step one:

given data

V1=0.25m^3

T1=290k

P1=100kPa

V2=0.5m^2

T2=405k

P2=? final pressure

Step two:

The combined gas equation is given as

P1V1/T1=P2V2/T2

Substituting we have

(100*0.25)/290=P2*0.05/405

25/290=0.5P2/405

0.086=0.05P2/405

cross multiply

0.086*405=0.05P2

34.9=0.05P2

divide both sides by 0.05

P2=34.9/0.05

P2=698.3Kpa

<u>Therefore the new pressure is 698.3Kpa when the gas is compressed</u>

You might be interested in
Cast iron has about how much carbon content?
Aliun [14]

Answer:

c

Explanation:

7 0
3 years ago
A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
zzz [600]

Answer:

474.59 mg/L

Explanation:

Given that

BOD = 30 mg/L

Original BOD  = 30 mg/L × dilution factor

Original BOD  = 30 mg/L  × 10 = 300 mg/L

L_o = \frac{BOD}{1-e^{-5t}}

here L_o is the ultimate BOD ; BOD is the  biochemical oxygen demand ;  t = 0.20 /day

L_o = \frac{300}{1-e^{-5(0.20)}}

L_o = 474.59 \ mg/L

3 0
3 years ago
A common process for increasing the moisture content of air is to bubble it through a column of water. The air bubbles are assum
likoan [24]

Answer:

Explanation:

Assumptions is that

1. The flow is an unsteady one

2. Bubbles diameter is constant

3. The bubble velocity is slow

4. There is no homogenous reaction

5. It has a one dimensional flux model along the radial direction

5 0
3 years ago
un contenedor de 0.01m∧3 se llena con 2kg de nitrogeno a una presion de 15mpa ¿cual es la temperatura del nitrogeno?resolver uti
777dan777 [17]
Ecfñnokg pinogdf gabn Etta r
7 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Other questions:
  • A tire-pressure monitoring system warns you with a dashboard alert when one of your car tires is significantly under-inflated.
    6·1 answer
  • Not a characteristic property of ceramic material (a) high temperature stability (b) high mechanical strength (c) low elongation
    7·2 answers
  • What is the main role of matrix in composites! a)-to transfer stress to the other phases b)- to protect phases from environment
    7·1 answer
  • Which statement concerning symbols used on plans is true?
    10·1 answer
  • An article gave a scatter plot along with the least squares line of x = rainfall volume (m3) and y = runoff volume (m3) for a pa
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B7x%7D%20%5C%2C%20dx" id="TexFormula1" title="\int\limits^a_b {7x} \
    8·1 answer
  • Engineering Specificaitons is ...
    9·1 answer
  • 10. True or False? A disruptive technology<br> radically changes the way people live and<br> work.
    5·2 answers
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
  • 1) Which step in the Design Process utilizes technical drawings to provide information necessary to
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!