1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
9966 [12]
2 years ago
11

A gas has an initial volume o.25m^3, and absolute pressure 100kPa. Its initial temperature is 290k. The gas is compressed into a

volume of o.O5m^3 during which its temperature rises to 405k. Calculate its final pressure using the formula . P1V1/T1=p2V2/t2
Engineering
1 answer:
dezoksy [38]2 years ago
5 0

Answer:

<h2>698.3Kpa</h2>

Explanation:

Step one:

given data

V1=0.25m^3

T1=290k

P1=100kPa

V2=0.5m^2

T2=405k

P2=? final pressure

Step two:

The combined gas equation is given as

P1V1/T1=P2V2/T2

Substituting we have

(100*0.25)/290=P2*0.05/405

25/290=0.5P2/405

0.086=0.05P2/405

cross multiply

0.086*405=0.05P2

34.9=0.05P2

divide both sides by 0.05

P2=34.9/0.05

P2=698.3Kpa

<u>Therefore the new pressure is 698.3Kpa when the gas is compressed</u>

You might be interested in
When moving cylinders always remove and make
Karolina [17]

Unless cylinders are firmly secured on a special carrier intended for this purpose, regulators shall be removed and valve protection caps put in place before cylinders are moved. A suitable cylinder truck, chain, or other steadying device shall be used to keep cylinders from being knocked over while in use.

5 0
3 years ago
2.) A fluid moves in a steady manner between two sections in a flow
Talja [164]

Answer:

250\ \text{lbm/min}

625\ \text{ft/min}

Explanation:

A_1 = Area of section 1 = 10\ \text{ft}^2

V_1 = Velocity of water at section 1 = 100 ft/min

v_1 = Specific volume at section 1 = 4\ \text{ft}^3/\text{lbm}

\rho = Density of fluid = 0.2\ \text{lb/ft}^3

A_2 = Area of section 2 = 2\ \text{ft}^2

Mass flow rate is given by

m=\rho A_1V_1=\dfrac{A_1V_1}{v_1}\\\Rightarrow m=\dfrac{10\times 100}{4}\\\Rightarrow m=250\ \text{lbm/min}

The mass flow rate through the pipe is 250\ \text{lbm/min}

As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

m=\rho A_2V_2\\\Rightarrow V_2=\dfrac{m}{\rho A_2}\\\Rightarrow V_2=\dfrac{250}{0.2\times 2}\\\Rightarrow V_2=625\ \text{ft/min}

The speed at section 2 is 625\ \text{ft/min}.

3 0
3 years ago
A car accelerates from rest with an acceleration of 5 m/s^2. The acceleration decreases linearly with time to zero in 15 s, afte
Tpy6a [65]

Answer: At time 18.33 seconds it will have moved 500 meters.

Explanation:

Since the acceleration of the car is a linear function of time it can be written as a function of time as

a(t)=5(1-\frac{t}{15})

a=\frac{d^{2}x}{dt^{2}}\\\\\therefore \frac{d^{2}x}{dt^{2}}=5(1-\frac{t}{15})

Integrating both sides we get

\int \frac{d^{2}x}{dt^{2}}dt=\int 5(1-\frac{t}{15})dt\\\\\frac{dx}{dt}=v=5t-\frac{5t^{2}}{30}+c

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0

again integrating with respect to time we get

\int \frac{dx}{dt}dt=\int (5t-\frac{5t^{2}}{30})dt\\\\x(t)=\frac{5t^{2}}{2}-\frac{5t^{3}}{90}+D

Now let us assume that car starts from origin thus D=0

thus in the first 15 seconds it covers a distance of

x(15)=2.5\times 15^{2}-\farc{15^{3}}{18}=375m

Thus the remaining 125 meters will be covered with a constant speed of

v(15)=5\times 15-\frac{15^{2}}{6}=37.5m/s

in time equalling t_{2}=\frac{125}{37.5}=3.33seconds

Thus the total time it requires equals 15+3.33 seconds

t=18.33 seconds

3 0
2 years ago
The pressure of a gas in a rigid container is 125kpa at 300k, what we be the new pressure if the temperature increases to 900k​
kipiarov [429]

Answer:

375 KPa

Explanation:

From the question given above, the following data were obtained:

Initial pressure (P₁) = 125 KPa

Initial temperature (T₁) = 300 K

Final temperature (T₂) = 900 K

Final pressure (P₂) =?

The new (i.e final) pressure of the gas can be obtained as follow:

P₁/T₁ = P₂/T₂

125 / 300 = P₂ / 900

Cross multiply

300 × P₂ = 125 × 900

300 × P₂ = 112500

Divide both side by 300

P₂ = 112500 / 300

P₂ = 375 KPa

Thus, the new pressure of the gas is 375 KPa

7 0
2 years ago
Oil of density 780 kg/m3 is flowing at a velocity of 20 m/s at the atmospheric pressure in a horizontal cylindrical tube elevate
Soloha48 [4]

Answer:

radius = 0.045 m

Explanation:

Given data:

density of oil = 780 kg/m^3

velocity = 20 m/s

height = 25 m

Total energy is = 57.5 kW

we have now

E = kinetic energy+ potential energy +  flow work

E = \dot m ( \frac{v^2}{2] +  zg + p\nu)

E = \dot m( \frac{v^2}{2] +  zg + p_{atm} \frac{1}{\rho})

57.5 \times 10^3 = \dot m ( \frac{20^2}{2} + 25 \times 9.81 + 101325 \frac{1}{780})

solving for flow rate

\dot m = 99.977we know that [tex]\dot m  = \rho AV

\dot m  = 780 \frac{\pi}{4} D^2\times 16

solving for d

99.97 = 780 \times \frac{\pi}{4} D^2\times 16

d = 0.090 m

so radius = 0.045 m

3 0
3 years ago
Other questions:
  • Establishes general guidelines concerning licensing and vehicle
    10·2 answers
  • Are spheroidized steels considered as composite? If so, what is the dispersed phase a)- No b)- Yes, Chromium Carbides c)- Yes, I
    12·1 answer
  • 5. What are the 3 basic types of electrical circuits?
    12·1 answer
  • What are the three elementary parts of a vibrating system?
    14·1 answer
  • A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
    11·1 answer
  • The W16x50, steel beam below has a span of 26' and is subjected to a 2.3 k/ft uniform distributed loading. If a 8 kip load is al
    8·1 answer
  • A thin 20-cm*20-cm flat plate is pulled at 1m/s horizontally through a 4-mm thick oil layer sandwiched between two stationary pl
    15·1 answer
  • An astronomer of 65 kg of mass hikes from the beach to the observatory atop the mountain in Mauna Kea, Hawaii (altitude of 4205
    15·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • Incremental software development could be very effectively used for customers who do not have a clear idea about the systems nee
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!