Answer:
Following are the proving to this question:
Explanation:
using the energy equation for entry and exit value
:

where




L.H.S = R.H.S
Umm the Water cycle sorry I’m trying
Answer:
the police officer cruise each streets precisely once and he enters and exit with the same gate.
Explanation:
NB: kindly check below for the attached picture.
The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.
The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.
Here in this question, the door is the vertex and the road is the edge.
The information needed to detemine a Euler circuit and a Hamilton circuit is;
"the police officer cruise each streets precisely once and he enters and exit with the same gate."
Check attachment for each type of circuit and the differences.
Answer:
W= 8120 KJ
Explanation:
Given that
Process is isothermal ,it means that temperature of the gas will remain constant.
T₁=T₂ = 400 K
The change in the entropy given ΔS = 20.3 KJ/K
Lets take heat transfer is Q ,then entropy change can be written as

Now by putting the values

Q= 20.3 x 400 KJ
Q= 8120 KJ
The heat transfer ,Q= 8120 KJ
From first law of thermodynamics
Q = ΔU + W
ΔU =Change in the internal energy ,W=Work
Q=Heat transfer
For ideal gas ΔU = m Cv ΔT]
At constant temperature process ,ΔT= 0
That is why ΔU = 0
Q = ΔU + W
Q = 0+ W
Q=W= 8120 KJ
Work ,W= 8120 KJ