Answer:
The criteria listed in order of importance are;
1) To be inflated in the event of a collision in order to protect the occupants of the front of the vehicle
2) To be able to withstand the load of the breaking force of the occupants in the front seat of the vehicle during a collision
3) To be relatively tough so as to resist being torn on impact with a sharp object
The constraints listed in order of importance are;
1) How is the model design able to sense a collision that requires the airbag to be inflated
2) The uncertainty of the load the airbag will withstand upon collision
3) The possible hazard that could be caused by the gas used to inflate the airbag
4) The usage/interaction tendency between the vehicle occupant and the airbag system
Explanation:
In order to produce an effective design, it is important to be able to foresee the possible deficiencies of an idea so as to be able to mitigate the problems before an actual incident happens.
D = m / V
d = 1300 g / 743 cm³
d = 1.749 g/cm³
Answer:
cinnamic acid - 150 mg
cis-stilbene - 100 μL
trans- stilbene - 100 mg
pyridinium tribromide - 200-385 mg
For this data:
moles of cinnamic acid = 0.150 g/148.16 g/mol = 0.001 mols
Theoretical mass of dibromoproduct formed = 0.001 mol x 307.97 g/mol = 0.312 g
cis-stilbene (100 ul = 0.1 ml)
moles of cis-stilbene = 0.1 ml x 1.01 g/mol/180.25 g/mol = 0.00056 mols
Theoretical mass of dibromoproduct formed = 0.00056 mol x 340.05 g/mol = 0.19 g
trans-stilbene
moles of tran-stilbene = 0.1 g/180.25 g/mol = 0.00055 mols
Theoretical mass of dibromoproduct formed = 0.00055 mol x 340.05 g/mol = 0.19 g
Explanation:
Answer: 69.152% → 63^Cu
30.848% → 65^Cu
Explanation:
As you know, the average atomic mass of an element is determined by taking the weighted average of the atomic masses of its naturally occurring isotopes.
Simply put, an element's naturally occurring isotopes will contribute to the average atomic mass of the element proportionally to their abundance.
Explanation: