1. Ur graph should have 2 vertical lines || , of equal height at mass 13 and 15.
2. One, because you have the mass, which in this case is 13 and the other 15, which has the same height. So it must be the isotope. By definition, an isotope has the same number of protons, but different number of neutrons.
3. to solve for fractional abundance, Let x = fraction of element: "I"-13
then fraction of "I"-15 must be 1-x
so you have: 13x + (15<span>)(1-x) = 13
solve for x.</span>
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
The more electronegativity atom attracts electrons more strongly and gains a slightly negative charge, the less electronegative atom has a slightly positive charge.