The Answer is B because primary consumers need to get their food from plants.
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N, = 25 N, a = -0.9
W = 83 N
m =
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.
=
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.
Answer:
<h3>The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. ... 1N=1kg ⋅m/s2. 1 N = 1 kg · m/s 2 . ... The gravitational force on a mass is its weight. ... </h3>
Explanation:
<h3>ILY:)</h3>
While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.