To solve this
problem, let us analyze this step by step. The temperature for each day is as
follows:
Water temperature
on Sunday = 78 degrees F
Water temperature
on Monday = changed by -3 degrees F
Water temperature
on Tuesday = changed by 3 degrees F
We can see that
the total change of water temperature from Sunday to Tuesday is:
-3 + 3 = 0
Therefore there
is zero overall change. There the integer which represents the temperature
change is “0”.
Since the overall
change in water temperature is zero, hence the temperature on Sunday and on
Tuesday is similar.
Water temperature
on Tuesday = 78 degrees F
Answer:
1. 9 < s < 17
2. 5 < MN < 19
3. AD > BD
Step-by-step explanation:
1. The triangle inequality tells you the sum of any two sides of a triangle must exceed the length of the other side. (Some versions say, "must be not less than ..." rather than "must exceed.") In practice, this means two things:
- the sum of the shortest two sides is greater than the length of the longest side
- the length of any side lies between the sum and the difference of the other two sides
Here, we can use the latter fact to write the desired inequality. The difference of the given sides is 13 -4 = 9; their sum is 13 +4 = 17. The third side must lie between 9 and 17. If that side length is designated "s", then ...
9 < s < 17
(If you don't mind a "triangle" that looks like a line segment, you can use ≤ instead of <.)
__
2. Same as (1) using different numbers.
12 -7 < MN < 12 +7
5 < MN < 19
__
3. Side CD is congruent to itself, and side CA is shown congruent to side CB. This means the requirements of the Hinge Theorem are met. That theorem tells you the longer side is opposite the greater angle:
AD > BD
Step-by-step explanation:
rjrurjrrmrjrjrnrbrbdu
Answer:
D: The function has a hole when x = 3, and vertical asymptotes when x = 0 and x = 5.
Step-by-step explanation:
The given rational function has vertical asymptotes and holes. Remember that an asymptote is placed when the function has undetermined results, when we give a x-value and the y-value cannot be determined, there we say exists an asymptotes, which is a punctual line that represents a discontinuation of the graph, the trace cannot cross that asymptote, it divide the whole function graph.
So, in this case we have to undetermined results when the function has a hole of x = 3, and vertical asymptotes when x = 0 and x = 5.