They can share electrons. By sharing, they form a covalent Bond and that way atoms can be stable.
Answer:
<h3>The answer is 0.67 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you
Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
The heat capacity for the second process is 15 J/K.
Explanation:
Given that,
Work = 100 J
Change temperature = 5 k
For adiabatic process,
The heat energy always same.


We need to calculate the number of moles and specific heat
Using formula of heat


Put the value into the formula


We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity for the second process
Using formula of heat

Put the value into the formula



Hence, The heat capacity for the second process is 15 J/K.
Answer:
trees
Explanation:
referring to the tree to prove his/her point.