Answer:
a) fr = 224.3 N
, b) fr = 224.3 N
, c) v = 198.0 m/s
Explanation:
a) For this exercise let's start by calculating the acceleration in the fall
v² = v₀² - 2 a (y-y₀)
When it jumps the initial vertical speed is zero
a = -v² / 2 (y-y₀)
a = -68 2/2 (1000-2000)
a = 2,312 m / s²
Let's use the second net law to enter the average friction force
fr = m a
fr = 97 2,312
fr = 224.3 N
b) let's look for acceleration
v² = v₀² - 2 a y
a = (v² –v₀²) / 2 (y-y₀)
a = (4² - 68²) / 2 (0-1000)
a = 2,304 m / s²
fr = m a
fr = 97 2,304
fr = 223.5 N
c) the speed of the wallet is searched with kinematics
v² = v₀² - 2 g (y-y₀)
v = √ (0-2 9.8 (0-2000))
v = 198.0 m/s
Well, the density of the water is

so i believe that is what the question is asking for :)
Answer:10cm3
Explanation:Volume Al = (27g Al)/(2.70g/cm3 Al) = 10cm3 Al. So, 27g of Al has a volume of 10cm3. *
Answer:
(a) 490 N on earth
(b) 80 N on earth
(c) 45.4545 kg on earth
(d) 270.27 kg on moon
Explanation:
We have given 1 kg = 9.8 N = 2.2 lbs on earth
And 1 kg = 1.6 N = 0.37 lbs on moon
(a) We have given mass of the person m = 50 kg
As it is given that 1 kg = 9.8 N
So 50 kg = 50×9.8 =490 N
(b) Mass of the person on moon = 50 kg
As it is given that on moon 1 kg = 1.6 N
So 50 kg = 50×1.6 = 80 N
(c) We have given that weight of the person on the earth = 100 lbs
As it is given that 1 kg = 2.2 lbs on earth
So 100 lbs = 45.4545 kg
(d) We have given weight of the person on moon = 100 lbs
As it is given that 1 kg = 0.37 lbs
So 100 lbs 