Answer:
How much energy would be produced from the reaction of 2.40 moles hydrogen with 3.95 moles chlorine?

Explanation:
Given,
2.40 moles hydrogen reacts with 3.95 moles chlorine.
From the balanced chemical equation,
1mol. of H2 reacts with 1mol. of Cl2
then,
2.40mol. of H2 reacts with ----?mol of Cl2

So, the remaining moles of Cl2 is in excess.
The limiting reagent is--- H2.
1mol. of H2 releases --- 554kJ of energy
then,
2.40mol of H2 releases ---- ?

Answer is: deltaH =-1329.6kJ
1. The formula for
absorbance is given as:
A = log (Io / I)
where A is absorbance, Io
is initial intensity, and I is final light intensity
log (Io / I) = A
log (Io / I) = 2
Io / I = 100
Taking the reverse which is
I / Io:
I / Io = 1 / 100
I / Io = 0.01
Therefore this means that
only 0.01 fraction of light or 1% passes through the sample.
2. What is meant by
transmittance values is actually the value of I / Io. So calculating for A:
at 10% transmittance = 0.10
A = log (Io / I)
A = log (1 / 0.10)
A = 1
at 90% transmittance = 0.90
A = log (Io / I)
A = log (1 / 0.90)
A = 0.046
So the absorbance should be
from 0.046 to 1
3. at 10% transmittance =
0.10
A = log (Io / I)
A = log (1 / 0.10)
<span>A = 1</span>
Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
It is basically the function of evaporation.
If it is wrong i am sorry.
I think 43.12 I’m not that good with math