Answer: It's a redox reaction
Explanation:
Answer:
Explanation:
Enertia is an integral part of Newton's first law of motion.
It is the tendency of an object to <u>stay at rest</u> or <u>to continue moving</u> until and unless <u>any external unbalanced force</u>, (like, applied force or force of tension or frictional force ) is applied to either move it from rest or change its speed(in other words, accelerate it!!).
Example below, is of ball at rest (fig1) and if this ball is moving straight on a frictionless surface(like ice) it will keep moving!! until, we push it or pull it.
most events like the rising and setting of the Sun were used a natural measurement of time until recently.
Solar time, which is based on the motion of the Sun, is not the only way of measuring time, however. One might keep track of the regular appearance of the full Moon. That event occurs once about every 29.5 solar days. The time between appearances of new moons, then, could be used to define a month.
One also can use the position of the stars for measuring time. The system is the same as that used for the Sun, since the Sun itself is a star. All other stars also rise and set on a regular basis.
Although any one of these systems is a satisfactory method for measuring some unit of time, such as a day or a month, the systems may conflict with each other. It is not possible, for example, to fit 365 solar days into 12 or 13 lunar months exactly. This problem creates the need for leap years
Read more: http://www.scienceclarified.com/Ti-Vi/Time.html#ixzz5e1E705sr
I abbreviated most of it but there is a ton more at this link if you still need more.
When we can get Pka for K2HPO4 =6.86 so we can determine the Ka :
when Pka = - ㏒ Ka
6.86 = -㏒ Ka
∴Ka = 1.38 x 10^-7
by using ICE table:
H2PO4- → H+ + HPO4
initial 0.4 m 0 0
change -X +X +X
Equ (0.4-X) X X
when Ka = [H+][HPO4] / [H2PO4-]
by substitution:
1.38 X 10^-7 = X^2 / (0.4-X) by solving for X
∴X = 2.3x 10^-4
∴[H+] = X = 2.3 x 10^-4
∴PH = -㏒[H+]
= -㏒ (2.3 x 10^-4)
∴PH = 3.6
We have that the the density of FeS is mathematically given as
From the question we are told
Iron(II) sulfide has a primitive <em>cubic</em> unit cell with <em>sulfide</em> ions at the <em>lattice points.</em>
The ionic radii of iron(II) ions and sulfide ions are 88 pm and 184 pm, respectively.
What is the density of FeS (in g/cm3)?
<h3>
Density</h3>
Generally the equation for the Velocity is mathematically given as

For more information on ionic radii visit
brainly.com/question/13981855