Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
yes yes i agree with you completely
The molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
<h3>How to calculate molar heat of fusion?</h3>
The heat of fusion of a substance can be calculated by using the following formula:
Q = m∆H
Where:
- Q = quantity of heat
- m = mass
- ∆H = change in temperature of fusion
However, the quantity of heat has been given as 9840calories. The molar heat of fusion of iron can be calculated by dividing the heat of fusion by the number of moles of iron.
Moles of iron = mass ÷ molar mass
moles = 200g ÷ 55.8g/mol
moles = 3.58moles
molar heat of fusion = 9840 cal ÷ 3.58mol
molar heat of fusion = 2748.6 cal/mol
Therefore, the molar heat of fusion for iron with a mass of 200.0g releases 9,840 cal when it freezes at its freezing point is 2,747.7 cal/mol.
Learn more about molar heat of fusion at: brainly.com/question/8263730
Answer:
A.
Explanation:
We know quite well that there are three states of matter. Solid,liquid and gaseous states.
While the gaseous states gives the highest freedom of movement, the solid state gives the least freedom of movement. Molecules and atoms of a solid are so tightly packed.
This makes them very dense as they are held together by strong intermolecular forces of attraction. These strong forces prevents the movement of the particles.
As these particles are strongly attracted towards each other, they tend to be incompressible.