<span>The phosphorus cycle is different compared to the water,carbon, and nitrogen cycle because it can not be found in the gas state. Phosphorus is only found in land, water, and sediment. The phosphorus cycle is a bio-geochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. The other cycles is the process by which it is converted between its various chemical form. Phosphorus has small particles that only sometime go up into the atmosphere and contribute to acid rain but other than that phosphorus stays in and on land, sea, and sediment.(:
Good luck!</span>
Answer: At temperature of 269 K the gas would occupy 1.33 L at 217 kPa
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 147 kPa
= final pressure of gas = 217 kPa
= initial volume of gas = 1.8 L
= final volume of gas = 1.33 L
= initial temperature of gas = 
= final temperature of gas = ?
Now put all the given values in the above equation, we get:


Thus at 269 K temperature the gas would occupy 1.33 L at 217 kPa
<span>Answer:
Enthalpy Change = (6 x -393.5) + (7 x -285.8) - (-204.6) + (19/2) 0.....???
like.. (6 x Enth CO2) + ( 7 x Enth H2O) - (Enth C6H14) + (19/2) Enth O2</span>
Answer:
magnesium
Explanation:
when you check from the periodic table, magnesium is in group 2 , period 3
Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.