Answer:
Mass of iron = 59.375 gm
Explanation:
Calories ( or joules) are added to the water by the hot steel so at the endpoint they are BOTH at 40 C
The water gains:
4.18 j/g-C * 50 * (40-30 C) = 2090 j
The steel gave up 2090 j going from 120 to 40 C
2090 = .44 j/g-C * m * (120-40) solve fro m = 59.375 gm
Answer:
The nuclear fuel used in a nuclear reactor needs to have a higher concentration of the U 235 isotope than that which exists in natural uranium ore. U235 when concentrated (or "enriched") is fissionable in light-water reactors (the most common reactor design in the USA).
Explanation:
Answer: Option (b) is the correct answer.
Explanation:
It is known that metals are the species which readily lose an electron and tend to attain a positive charge.
For example, atomic number of sodium is 11 and its is an alkali metal. It electronic distribution is 2, 8, 1.
And, in order to attain stability it readily loses an electron and thus it become
ion.
Also, it is known that species which tend to transfer or donate their valence electrons to other atoms tend to form ionic bond and the compound formed is known as ionic compound.
Therefore, we can conclude that the statement metal atoms held together by ionic bonds best describes a metal solid.